Stability of Ionogels upon Contact with Water: Effect of Polymer Matrix Hydrophobicity and Ionic Liquid Solubility

IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL
S. Yu. Kottsov, A. O. Badulina, E. A. Trufanova, G. S. Taran, A. E. Baranchikov, A. V. Nelyubin, A. N. Malkova, M. E. Nikiforova, S. A. Lermontov, V. K. Ivanov
{"title":"Stability of Ionogels upon Contact with Water: Effect of Polymer Matrix Hydrophobicity and Ionic Liquid Solubility","authors":"S. Yu. Kottsov,&nbsp;A. O. Badulina,&nbsp;E. A. Trufanova,&nbsp;G. S. Taran,&nbsp;A. E. Baranchikov,&nbsp;A. V. Nelyubin,&nbsp;A. N. Malkova,&nbsp;M. E. Nikiforova,&nbsp;S. A. Lermontov,&nbsp;V. K. Ivanov","doi":"10.1134/S1061933X24600453","DOIUrl":null,"url":null,"abstract":"<p>New composite materials (ionogels) have been obtained based on imidazolium ionic liquids immobilized in highly porous polymers, i.e., polyamide 6,6 (nylon 6,6) and low-density polyethylene. A method has been proposed for determining the rate of ionic liquid removal from an ionogel upon contact with water, with this method being based on continuous measuring the conductivity of an aqueous phase. The results of the conductometric measurements have been confirmed by high-performance liquid chromatography data. It has been shown that the stability of ionogels upon contact with water is determined by both the hydrophobicity of a polymer matrix and the solubility of an ionic liquid in water. The highest degree of ionic liquid removal (more than 80%) has been observed for composites based on porous polyamide 6,6 (hydrophilic matrix) and dicyanimide 1-butyl-3-methylimidazolium (completely miscible with water). Ionogels based on low-density polyethylene (hydrophobic matrix) and bis(trifluoromethylsulfonyl)imide 1-butyl-3-methylimidazolium (poorly soluble , &lt;1 wt %, in water) have shown the highest stability (washout degree of no more than 53% over 24 h). The method proposed for analyzing the rate of ionic liquid dissolution in water has been used to discuss the mechanism of this process.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"86 5","pages":"705 - 718"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24600453","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

New composite materials (ionogels) have been obtained based on imidazolium ionic liquids immobilized in highly porous polymers, i.e., polyamide 6,6 (nylon 6,6) and low-density polyethylene. A method has been proposed for determining the rate of ionic liquid removal from an ionogel upon contact with water, with this method being based on continuous measuring the conductivity of an aqueous phase. The results of the conductometric measurements have been confirmed by high-performance liquid chromatography data. It has been shown that the stability of ionogels upon contact with water is determined by both the hydrophobicity of a polymer matrix and the solubility of an ionic liquid in water. The highest degree of ionic liquid removal (more than 80%) has been observed for composites based on porous polyamide 6,6 (hydrophilic matrix) and dicyanimide 1-butyl-3-methylimidazolium (completely miscible with water). Ionogels based on low-density polyethylene (hydrophobic matrix) and bis(trifluoromethylsulfonyl)imide 1-butyl-3-methylimidazolium (poorly soluble , <1 wt %, in water) have shown the highest stability (washout degree of no more than 53% over 24 h). The method proposed for analyzing the rate of ionic liquid dissolution in water has been used to discuss the mechanism of this process.

Abstract Image

离子凝胶与水接触时的稳定性:聚合物基质疏水性和离子液体溶解度的影响
基于固定在高多孔聚合物(即聚酰胺 6,6(尼龙 6,6)和低密度聚乙烯)中的咪唑离子液体,获得了新的复合材料(离子凝胶)。已经提出了一种方法,用于确定离子凝胶与水接触时离子液体的去除率,该方法以连续测量水相的电导率为基础。高效液相色谱法的数据证实了电导测量的结果。研究表明,离子凝胶与水接触后的稳定性取决于聚合物基质的疏水性和离子液体在水中的溶解度。基于多孔聚酰胺 6,6(亲水性基质)和 1-丁基-3-甲基咪唑鎓二氰化物(与水完全混溶)的复合材料对离子液体的去除率最高(超过 80%)。基于低密度聚乙烯(疏水基质)和双(三氟甲基磺酰基)亚胺 1-丁基-3-甲基咪唑鎓(难溶于水,1 wt %)的离子凝胶显示出最高的稳定性(24 小时内冲洗度不超过 53%)。为分析离子液体在水中的溶解速率而提出的方法已被用于讨论这一过程的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid Journal
Colloid Journal 化学-物理化学
CiteScore
2.20
自引率
18.20%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信