Universal Displacements in Anisotropic Linear Cauchy Elasticity

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Arash Yavari, Dimitris Sfyris
{"title":"Universal Displacements in Anisotropic Linear Cauchy Elasticity","authors":"Arash Yavari,&nbsp;Dimitris Sfyris","doi":"10.1007/s10659-024-10094-5","DOIUrl":null,"url":null,"abstract":"<div><p>Universal displacements are those displacements that can be maintained for any member of a specific class of linear elastic materials in the absence of body forces, solely by applying boundary tractions. For linear hyperelastic (Green elastic) solids, it is known that the space of universal displacements explicitly depends on the symmetry group of the material, and moreover, the larger the symmetry group the larger the set of universal displacements. Linear Cauchy elastic solids, which include linear hyperelastic solids as a special case, do not necessarily have an underlying energy function. Consequently, their elastic constants do not possess the major symmetries. In this paper, we characterize the universal displacements of anisotropic linear Cauchy elasticity. We prove the result that for each symmetry class, the set of universal displacements of linear Cauchy elasticity is identical to that of linear hyperelasticity.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10094-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Universal displacements are those displacements that can be maintained for any member of a specific class of linear elastic materials in the absence of body forces, solely by applying boundary tractions. For linear hyperelastic (Green elastic) solids, it is known that the space of universal displacements explicitly depends on the symmetry group of the material, and moreover, the larger the symmetry group the larger the set of universal displacements. Linear Cauchy elastic solids, which include linear hyperelastic solids as a special case, do not necessarily have an underlying energy function. Consequently, their elastic constants do not possess the major symmetries. In this paper, we characterize the universal displacements of anisotropic linear Cauchy elasticity. We prove the result that for each symmetry class, the set of universal displacements of linear Cauchy elasticity is identical to that of linear hyperelasticity.

各向异性线性考氏弹性中的普遍位移
通用位移是指在没有体力的情况下,仅通过施加边界牵引力就能保持特定类别线性弹性材料中任何成员的位移。对于线性超弹性(绿色弹性)固体,众所周知,通用位移空间明确取决于材料的对称群,此外,对称群越大,通用位移集就越大。线性考氏弹性固体(包括作为特例的线性超弹性固体)不一定具有基本的能量函数。因此,它们的弹性常数不具备主要对称性。在本文中,我们描述了各向异性线性考西弹性的普遍位移。我们证明了这样一个结果:对于每个对称类,线性考氏弹性的通用位移集与线性超弹性的通用位移集相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信