Micro-kinetic modeling of temporal analysis of products data using kinetics-informed neural networks†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dingqi Nai, Gabriel S. Gusmão, Zachary A. Kilwein, Fani Boukouvala and Andrew J. Medford
{"title":"Micro-kinetic modeling of temporal analysis of products data using kinetics-informed neural networks†","authors":"Dingqi Nai, Gabriel S. Gusmão, Zachary A. Kilwein, Fani Boukouvala and Andrew J. Medford","doi":"10.1039/D4DD00163J","DOIUrl":null,"url":null,"abstract":"<p >The temporal analysis of products (TAP) technique produces extensive transient kinetic data sets, but it is challenging to translate the large quantity of raw data into physically interpretable kinetic models, largely due to the computational scaling of existing numerical methods for fitting TAP data. In this work, we utilize kinetics-informed neural networks (KINNs), which are artificial feedforward neural networks designed to solve ordinary differential equations constrained by micro-kinetic models, to model the TAP data. We demonstrate that, under the assumption that all concentrations are known in the thin catalyst zone, KINNs can simultaneously fit the transient data, retrieve the kinetic model parameters, and interpolate unseen pulse behavior for multi-pulse experiments. We further demonstrate that, by modifying the loss function, KINNs maintain these capabilities even when precise thin-zone information is unavailable, as would be the case with real experimental TAP data. We also compare the approach to existing optimization techniques, which reveals improved noise tolerance and performance in extracting kinetic parameters. The KINNs approach offers an efficient alternative for TAP analysis and can assist in interpreting transient kinetics in complex systems over long timescales.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 11","pages":" 2327-2340"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00163j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00163j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The temporal analysis of products (TAP) technique produces extensive transient kinetic data sets, but it is challenging to translate the large quantity of raw data into physically interpretable kinetic models, largely due to the computational scaling of existing numerical methods for fitting TAP data. In this work, we utilize kinetics-informed neural networks (KINNs), which are artificial feedforward neural networks designed to solve ordinary differential equations constrained by micro-kinetic models, to model the TAP data. We demonstrate that, under the assumption that all concentrations are known in the thin catalyst zone, KINNs can simultaneously fit the transient data, retrieve the kinetic model parameters, and interpolate unseen pulse behavior for multi-pulse experiments. We further demonstrate that, by modifying the loss function, KINNs maintain these capabilities even when precise thin-zone information is unavailable, as would be the case with real experimental TAP data. We also compare the approach to existing optimization techniques, which reveals improved noise tolerance and performance in extracting kinetic parameters. The KINNs approach offers an efficient alternative for TAP analysis and can assist in interpreting transient kinetics in complex systems over long timescales.

Abstract Image

利用动力学信息神经网络对产品数据的时间分析进行微观动力学建模†。
产品的时间分析(TAP)技术会产生大量的瞬态动力学数据集,但要将大量原始数据转化为物理上可解释的动力学模型却很困难,这主要是由于现有拟合 TAP 数据的数值方法的计算规模所致。在这项工作中,我们利用动力学信息神经网络(KINNs)来建立 TAP 数据模型,KINNs 是一种人工前馈神经网络,旨在求解受微观动力学模型约束的常微分方程。我们证明,在已知薄催化剂区所有浓度的假设下,KINNs 可以同时拟合瞬态数据、检索动力学模型参数,并对多脉冲实验中未见的脉冲行为进行插值。我们进一步证明,通过修改损失函数,KINNs 即使在无法获得精确的薄区信息(如真实的 TAP 实验数据)的情况下也能保持这些能力。我们还将该方法与现有的优化技术进行了比较,结果表明,该方法在提取动力学参数方面具有更好的噪音容忍度和性能。KINNs 方法为 TAP 分析提供了一种有效的替代方法,有助于解释复杂系统的长时间尺度瞬态动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信