{"title":"MoltDB: Accelerating Blockchain via Ancient State Segregation","authors":"Junyuan Liang;Wuhui Chen;Zicong Hong;Haogang Zhu;Wangjie Qiu;Zibin Zheng","doi":"10.1109/TPDS.2024.3467927","DOIUrl":null,"url":null,"abstract":"Blockchain store states in Log-Structured Merge (LSM) tree-based database. Due to blockchain traceability, the growing ancient states are inevitably stored in the databases. Unfortunately, by default, this process mixes \n<italic>current</i>\n and \n<italic>ancient</i>\n states in the data layout, increasing unnecessary disk I/O access and slowing transaction execution. This paper proposes MoltDB, a scalable LSM-based database for efficient transaction execution through a novel idea of \n<italic>ancient state segregation</i>\n, i.e., to segregate current and ancient states in the data layout. However, the frequently generated and uncertainly accessed characteristics of ancient states make the segregation challenging. Thus, we develop an “extract-compact” mechanism to batch extraction process for frequently generated ancient states and the LSM compaction process to relieve additional disk I/O overhead. Moreover, we design an adaptive LSM-based storage for the uncertainly accessed ancient states extracted for on-demand access. We implement MoltDB as a database engine compatible with many mainstream blockchains and integrate it into Ethereum for evaluation. Experimental results show that MoltDB achieves 1.3 × transaction throughput and 30% disk I/O latency savings over the state-of-the-art works.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 12","pages":"2545-2558"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713891/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Blockchain store states in Log-Structured Merge (LSM) tree-based database. Due to blockchain traceability, the growing ancient states are inevitably stored in the databases. Unfortunately, by default, this process mixes
current
and
ancient
states in the data layout, increasing unnecessary disk I/O access and slowing transaction execution. This paper proposes MoltDB, a scalable LSM-based database for efficient transaction execution through a novel idea of
ancient state segregation
, i.e., to segregate current and ancient states in the data layout. However, the frequently generated and uncertainly accessed characteristics of ancient states make the segregation challenging. Thus, we develop an “extract-compact” mechanism to batch extraction process for frequently generated ancient states and the LSM compaction process to relieve additional disk I/O overhead. Moreover, we design an adaptive LSM-based storage for the uncertainly accessed ancient states extracted for on-demand access. We implement MoltDB as a database engine compatible with many mainstream blockchains and integrate it into Ethereum for evaluation. Experimental results show that MoltDB achieves 1.3 × transaction throughput and 30% disk I/O latency savings over the state-of-the-art works.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.