{"title":"Enhancing Security in Low-Power Wide-Area (LPWA) IoT Environments: The Role of HSM, Tamper-Proof Technology, and Quantum Cryptography","authors":"Hyung-Sub Han;Tae-hyuk Choi;Jong-Seong Yoon","doi":"10.13052/jwe1540-9589.2363","DOIUrl":null,"url":null,"abstract":"Low-power wide-area (LPWA) networks are integral to expanding Internet of Things (IoT) applications, offering extensive coverage with low power consumption. However, these networks face significant security challenges due to their widespread deployment and inherent constraints. In order to provide secure services in an LPWA IoT environment, important information stored in IoT devices (encryption keys, device unique numbers, etc.) must be safely protected from external hacking or theft by physical access, and it is necessary to develop tamper-proof technology to enhance physical security. Meanwhile, with so many ruggedized IoT devices processing and transmitting sensitive information, security systems are essential to protect the integrity and privacy of IoT data. This paper explores the critical role of hardware security modules (HSMs), tamper-proof technology, and quantum cryptography in enhancing the physical, network, and data security of LPWA IoT environments. We propose operational strategies for HSMs, tamper-proof technology in ruggedized LPWA IoT settings, and a quantum key distribution (QKD)-based IPsec solution for robust network and data security.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"23 6","pages":"787-800"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747167","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10747167/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Low-power wide-area (LPWA) networks are integral to expanding Internet of Things (IoT) applications, offering extensive coverage with low power consumption. However, these networks face significant security challenges due to their widespread deployment and inherent constraints. In order to provide secure services in an LPWA IoT environment, important information stored in IoT devices (encryption keys, device unique numbers, etc.) must be safely protected from external hacking or theft by physical access, and it is necessary to develop tamper-proof technology to enhance physical security. Meanwhile, with so many ruggedized IoT devices processing and transmitting sensitive information, security systems are essential to protect the integrity and privacy of IoT data. This paper explores the critical role of hardware security modules (HSMs), tamper-proof technology, and quantum cryptography in enhancing the physical, network, and data security of LPWA IoT environments. We propose operational strategies for HSMs, tamper-proof technology in ruggedized LPWA IoT settings, and a quantum key distribution (QKD)-based IPsec solution for robust network and data security.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.