HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler thermoelectrics†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuyan Yang, Yifei Lin, Shengnan Dai, Yifan Zhu, Jinyang Xi, Lili Xi, Xiaokun Gu, David J. Singh, Wenqing Zhang and Jiong Yang
{"title":"HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler thermoelectrics†","authors":"Yuyan Yang, Yifei Lin, Shengnan Dai, Yifan Zhu, Jinyang Xi, Lili Xi, Xiaokun Gu, David J. Singh, Wenqing Zhang and Jiong Yang","doi":"10.1039/D4DD00240G","DOIUrl":null,"url":null,"abstract":"<p >High-throughput screening of thermoelectric materials from databases requires efficient and accurate computational methods. Machine-learning interatomic potentials (MLIPs) provide a promising avenue, facilitating the development of database-driven thermal transport applications through high-throughput simulations. However, the present challenge is the lack of standardized databases and openly available models for precise large-scale simulations. Here, we introduce HH130, a standardized database for 130 half-Heusler (HH) compounds in MatHub-3d (http://www.mathub3d.net), containing both MLIP models and datasets for the thermal transport of HH thermoelectrics. HH130 contains 31 891 total configurations (∼245 configurations per HH) and 390 MLIP models (three models per HH), generated using the dual adaptive sampling method to cover a wide range of thermodynamic conditions, and can be openly accessed on MatHub-3d. Comprehensive validation against first-principles calculations demonstrates that the MLIP models accurately predict energies, forces, and interatomic force constants (IFCs). The MLIP models in HH130 enabled us to efficiently perform four-phonon interactions for 80 HHs with phonon frequencies closely matching <em>ab initio</em> results. It is found that HHs with an 8 valence electron count (VEC) per unit cell generally exhibit lower lattice thermal conductivities (<em>κ</em><small><sub>L</sub></small>s) compared to those with an 18 VEC, due to a combination of low 2nd-order IFCs and large scattering phase spaces in the former group. Additionally, we identified several HHs that demonstrate significant reductions in <em>κ</em><small><sub>L</sub></small> due to four-phonon interactions. HH130 provides a robust platform for high-throughput computation of <em>κ</em><small><sub>L</sub></small> and aids in the discovery of next-generation thermoelectrics through machine learning.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 11","pages":" 2201-2210"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00240g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00240g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput screening of thermoelectric materials from databases requires efficient and accurate computational methods. Machine-learning interatomic potentials (MLIPs) provide a promising avenue, facilitating the development of database-driven thermal transport applications through high-throughput simulations. However, the present challenge is the lack of standardized databases and openly available models for precise large-scale simulations. Here, we introduce HH130, a standardized database for 130 half-Heusler (HH) compounds in MatHub-3d (http://www.mathub3d.net), containing both MLIP models and datasets for the thermal transport of HH thermoelectrics. HH130 contains 31 891 total configurations (∼245 configurations per HH) and 390 MLIP models (three models per HH), generated using the dual adaptive sampling method to cover a wide range of thermodynamic conditions, and can be openly accessed on MatHub-3d. Comprehensive validation against first-principles calculations demonstrates that the MLIP models accurately predict energies, forces, and interatomic force constants (IFCs). The MLIP models in HH130 enabled us to efficiently perform four-phonon interactions for 80 HHs with phonon frequencies closely matching ab initio results. It is found that HHs with an 8 valence electron count (VEC) per unit cell generally exhibit lower lattice thermal conductivities (κLs) compared to those with an 18 VEC, due to a combination of low 2nd-order IFCs and large scattering phase spaces in the former group. Additionally, we identified several HHs that demonstrate significant reductions in κL due to four-phonon interactions. HH130 provides a robust platform for high-throughput computation of κL and aids in the discovery of next-generation thermoelectrics through machine learning.

Abstract Image

HH130:机器学习原子间势标准化数据库、数据集及其在半休斯勒热电的热传输中的应用†。
从数据库中高通量筛选热电材料需要高效准确的计算方法。机器学习原子间势(MLIPs)提供了一条前景广阔的途径,通过高通量模拟促进了数据库驱动的热传输应用的发展。然而,目前面临的挑战是缺乏标准化数据库和公开可用的模型来进行精确的大规模模拟。在此,我们介绍 HH130,这是 MatHub-3d (http://www.mathub3d.net) 中 130 个半休斯勒(HH)化合物的标准化数据库,包含 HH 热电半导体热传输的 MLIP 模型和数据集。HH130 包含 31 891 个总构型(每个 HH 有 245 个构型)和 390 个 MLIP 模型(每个 HH 有 3 个模型),这些模型是使用双重自适应采样方法生成的,涵盖了广泛的热力学条件,可以在 MatHub-3d 上公开访问。根据第一原理计算进行的全面验证表明,MLIP 模型能准确预测能量、力和原子间力常数 (IFC)。HH130 中的 MLIP 模型使我们能够有效地对 80 个 HHs 进行四声子相互作用,其声子频率与 ab initio 计算结果非常接近。研究发现,与具有 18 个价电子数 (VEC) 的 HHs 相比,具有 8 个价电子数 (VEC) 的 HHs 通常具有较低的晶格热导率 (κLs),这是由于前者具有较低的二阶 IFC 和较大的散射相空间。此外,我们还发现了几种 HHs,它们的 κL 因四声子相互作用而显著降低。HH130 为κL 的高通量计算提供了一个强大的平台,并有助于通过机器学习发现下一代热电半导体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信