Keferson de A. Carvalho , Graiciany Barros , Matheus H.S. Araújo , Andre A. Campagnole dos Santos , Vitor Silva , Tiago Augusto Santiago Vieira , Rebeca Cabral Gonçalves
{"title":"Closing the nuclear fuel cycle: Strategic approaches for NuScale-like reactor","authors":"Keferson de A. Carvalho , Graiciany Barros , Matheus H.S. Araújo , Andre A. Campagnole dos Santos , Vitor Silva , Tiago Augusto Santiago Vieira , Rebeca Cabral Gonçalves","doi":"10.1016/j.nucengdes.2024.113672","DOIUrl":null,"url":null,"abstract":"<div><div>The present study proposes the potential implementation of eight different closed fuel cycle strategies for a NuScale-like reactor core using its own spent fuel as a reusable source of fissile material for energy production. For that, the spent fuel composition after three burnup cycles of approximately 12 MWd/kgU of NuScale-like initial core and five years of cooling in a spent fuel pool was theoretically reprocessed by GANEX or UREX+ methods. After reprocessing, these two new fuel compositions were spiked in a mixture of thorium (Th) or depleted uranium (DpU), and afterwards inserted into specific batch positions of the core. Therefore, the proposed NuScale-like core configurations contain fuel assemblies loaded with conventional uranium-based fuel and others loaded with reprocessed fuel, resulting in the following combinations: UO<sub>2</sub> and GANEX spiked with Th, UO<sub>2</sub> and GANEX spiked with DpU, UO<sub>2</sub> and UREX+ spiked with Th, UO<sub>2</sub> and UREX+ spiked with DpU. The main idea is to comprehend the advantages of adopting the closed nuclear fuel cycle for a NuScale-like reactor by comparing the reference case and the cases containing reprocessed fuel. The results exhibited that all instances in which the core was simulated with reprocessed fuel improved the feedback coefficient, maximum excess of reactivity varying the boron concentration in the coolant, and power peak factor (PPF). Furthermore, the closed nuclear fuel strategies also demonstrated savings of about 17.50% in terms of separating work units (SWU) due to plutonium and uranium recycling, and a potential burnup extension of approximately 43%. The Serpent code version 2.1.32 developed by VTT and ENDF/B-VII.0 nuclear data library has been used to perform the simulations.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"430 ","pages":"Article 113672"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007726","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study proposes the potential implementation of eight different closed fuel cycle strategies for a NuScale-like reactor core using its own spent fuel as a reusable source of fissile material for energy production. For that, the spent fuel composition after three burnup cycles of approximately 12 MWd/kgU of NuScale-like initial core and five years of cooling in a spent fuel pool was theoretically reprocessed by GANEX or UREX+ methods. After reprocessing, these two new fuel compositions were spiked in a mixture of thorium (Th) or depleted uranium (DpU), and afterwards inserted into specific batch positions of the core. Therefore, the proposed NuScale-like core configurations contain fuel assemblies loaded with conventional uranium-based fuel and others loaded with reprocessed fuel, resulting in the following combinations: UO2 and GANEX spiked with Th, UO2 and GANEX spiked with DpU, UO2 and UREX+ spiked with Th, UO2 and UREX+ spiked with DpU. The main idea is to comprehend the advantages of adopting the closed nuclear fuel cycle for a NuScale-like reactor by comparing the reference case and the cases containing reprocessed fuel. The results exhibited that all instances in which the core was simulated with reprocessed fuel improved the feedback coefficient, maximum excess of reactivity varying the boron concentration in the coolant, and power peak factor (PPF). Furthermore, the closed nuclear fuel strategies also demonstrated savings of about 17.50% in terms of separating work units (SWU) due to plutonium and uranium recycling, and a potential burnup extension of approximately 43%. The Serpent code version 2.1.32 developed by VTT and ENDF/B-VII.0 nuclear data library has been used to perform the simulations.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.