Han Wu , Qing Peng , Fenglei Jin , Jingru Song , Xiaoming Liu
{"title":"Seismic behavior analysis of control rod dropping by vector form Intrinsic Finite-Element method","authors":"Han Wu , Qing Peng , Fenglei Jin , Jingru Song , Xiaoming Liu","doi":"10.1016/j.nucengdes.2024.113660","DOIUrl":null,"url":null,"abstract":"<div><div>Control rod drive mechanism (CDRM) play a major role in ensuring safe operation of nuclear reactor during the earthquake, under which the dropping time of control rod is crucial for safe shutdown. Under the earthquake, Rod Cluster Control Assembly (RCCA) has contact collision with the guide tube, resulting in an increase of friction and a decrease of the speed of the falling rod. In addition, in view of the slender structure of the falling rod, the flexible deformation vibration will occur under the impact excitation, which will aggravate the collision and friction. In order to solve the nonlinear problem caused by contact collision between control rod and guide tube, we proposed a dynamic behavior analysis program of rod dropping based on vector finite element method. In order to simulate contact collision force more accurately, we proposed a conformal contact law to simulate the contact force between control rod and guide tube. The vector finite element model and simulation program are validated by comparing with a rod drop experiment. Based on the developed program, the rod dropping behavior, including rod dropping time, contact force, friction force and control rod deformation under several earthquake condition were discussed in this work.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002954932400760X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Control rod drive mechanism (CDRM) play a major role in ensuring safe operation of nuclear reactor during the earthquake, under which the dropping time of control rod is crucial for safe shutdown. Under the earthquake, Rod Cluster Control Assembly (RCCA) has contact collision with the guide tube, resulting in an increase of friction and a decrease of the speed of the falling rod. In addition, in view of the slender structure of the falling rod, the flexible deformation vibration will occur under the impact excitation, which will aggravate the collision and friction. In order to solve the nonlinear problem caused by contact collision between control rod and guide tube, we proposed a dynamic behavior analysis program of rod dropping based on vector finite element method. In order to simulate contact collision force more accurately, we proposed a conformal contact law to simulate the contact force between control rod and guide tube. The vector finite element model and simulation program are validated by comparing with a rod drop experiment. Based on the developed program, the rod dropping behavior, including rod dropping time, contact force, friction force and control rod deformation under several earthquake condition were discussed in this work.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.