{"title":"The additionally charged forces in the Sun-Earth and Earth-Moon systems","authors":"Ting-Han Pei","doi":"10.1016/j.actaastro.2024.10.072","DOIUrl":null,"url":null,"abstract":"<div><div>We build a model to describe the net charges existing in the Sun and Earth. According to statistical mechanics, electrons on average move much faster than protons and neutrons at the same temperature. Electrons escape the Sun more easily than protons and neutrons, so the Sun becomes a charged star. We estimate the maximal net charges in the Sun by using statistical mechanics first. Then, we analyze the dynamical cycles between the positive and negative charged states. At a distance far away from the Sun, the effective net charges including the leaving protons and electrons are about <span><math><mrow><mn>6.3</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mspace></mspace><mi>C</mi></mrow></math></span> with energies of 1 GeV initially. We also use another way based on the observations of the Earth's perihelion precession to estimate the minimum and maximum net charges between <span><math><mrow><mn>1.15</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mspace></mspace><mi>C</mi></mrow></math></span> and <span><math><mrow><mn>2.80</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><mspace></mspace><mi>C</mi></mrow></math></span> in space from the Sun to Earth. The most charged particles from the Sun to the Earth are electrons, so both the Moon and Earth are impacted by them and very possibly have the same electricity. Next, we propose new physical mechanisms causing the slowdown of the Earth's spin and propose Coulomb's repulsive force resulting in the increasing distance between the Moon and Earth. As a result, it gives the net charges of <span><math><mrow><mn>1.11</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mspace></mspace><mi>C</mi></mrow></math></span> surrounding the Earth and <span><math><mrow><mn>8.29</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mspace></mspace><mi>C</mi></mrow></math></span> surrounding the Moon. Our estimations also correspond to early works. The charges surrounding the Sun and Earth cause the Earth to be long-term accelerated in the radial direction by Coulomb's force. Finally, using the effective net charges of the Sun and Earth, we calculate the increasing distance between 11.4 <em>m</em> and 19.4 <em>m</em> on average per century if the initial radial velocities of the Earth are in between <span><math><mrow><mn>3.59</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup><mspace></mspace><mi>m</mi><mo>/</mo><mi>s</mi></mrow></math></span> and <span><math><mrow><mn>6.12</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup><mspace></mspace><mi>m</mi><mo>/</mo><mi>s</mi></mrow></math></span>, which satisfies the observed reports.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 555-569"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006477","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
We build a model to describe the net charges existing in the Sun and Earth. According to statistical mechanics, electrons on average move much faster than protons and neutrons at the same temperature. Electrons escape the Sun more easily than protons and neutrons, so the Sun becomes a charged star. We estimate the maximal net charges in the Sun by using statistical mechanics first. Then, we analyze the dynamical cycles between the positive and negative charged states. At a distance far away from the Sun, the effective net charges including the leaving protons and electrons are about with energies of 1 GeV initially. We also use another way based on the observations of the Earth's perihelion precession to estimate the minimum and maximum net charges between and in space from the Sun to Earth. The most charged particles from the Sun to the Earth are electrons, so both the Moon and Earth are impacted by them and very possibly have the same electricity. Next, we propose new physical mechanisms causing the slowdown of the Earth's spin and propose Coulomb's repulsive force resulting in the increasing distance between the Moon and Earth. As a result, it gives the net charges of surrounding the Earth and surrounding the Moon. Our estimations also correspond to early works. The charges surrounding the Sun and Earth cause the Earth to be long-term accelerated in the radial direction by Coulomb's force. Finally, using the effective net charges of the Sun and Earth, we calculate the increasing distance between 11.4 m and 19.4 m on average per century if the initial radial velocities of the Earth are in between and , which satisfies the observed reports.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.