{"title":"Twisted bimodules and universal enveloping algebras associated to VOAs","authors":"Jianzhi Han , Yukun Xiao , Shun Xu","doi":"10.1016/j.jalgebra.2024.10.029","DOIUrl":null,"url":null,"abstract":"<div><div>For any vertex operator algebra <em>V</em>, finite automorphism <em>g</em> of <em>V</em> of order <em>T</em> and <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>/</mo><mi>T</mi><mo>)</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, we construct a family of associative algebras <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>-bimodules <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> from the point of view of representation theory. We prove that the algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> is identical to the algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> constructed by Dong, Li and Mason, and that the bimodule <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> is identical to <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> which was constructed by Dong and Jiang. We also prove that the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>-bimodule <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> is isomorphic to <span><math><mi>U</mi><msub><mrow><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></msub><mo>/</mo><mi>U</mi><msubsup><mrow><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow><mrow><mo>−</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>/</mo><mi>T</mi></mrow></msubsup></math></span>, where <span><math><mi>U</mi><msub><mrow><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the subspace of degree <em>k</em> of the <span><math><mo>(</mo><mn>1</mn><mo>/</mo><mi>T</mi><mo>)</mo><mi>Z</mi></math></span>-graded universal enveloping algebra <span><math><mi>U</mi><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></math></span> of <em>V</em> with respect to <em>g</em> and <span><math><mi>U</mi><msubsup><mrow><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></mrow><mrow><mi>k</mi></mrow><mrow><mi>l</mi></mrow></msubsup></math></span> is some subspace of <span><math><mi>U</mi><msub><mrow><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msub></math></span>. And we show that all these bimodules <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> can be defined in a simpler way.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For any vertex operator algebra V, finite automorphism g of V of order T and , we construct a family of associative algebras and -bimodules from the point of view of representation theory. We prove that the algebra is identical to the algebra constructed by Dong, Li and Mason, and that the bimodule is identical to which was constructed by Dong and Jiang. We also prove that the -bimodule is isomorphic to , where is the subspace of degree k of the -graded universal enveloping algebra of V with respect to g and is some subspace of . And we show that all these bimodules can be defined in a simpler way.