Twisted bimodules and universal enveloping algebras associated to VOAs

Pub Date : 2024-10-30 DOI:10.1016/j.jalgebra.2024.10.029
Jianzhi Han , Yukun Xiao , Shun Xu
{"title":"Twisted bimodules and universal enveloping algebras associated to VOAs","authors":"Jianzhi Han ,&nbsp;Yukun Xiao ,&nbsp;Shun Xu","doi":"10.1016/j.jalgebra.2024.10.029","DOIUrl":null,"url":null,"abstract":"<div><div>For any vertex operator algebra <em>V</em>, finite automorphism <em>g</em> of <em>V</em> of order <em>T</em> and <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>/</mo><mi>T</mi><mo>)</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, we construct a family of associative algebras <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>-bimodules <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> from the point of view of representation theory. We prove that the algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> is identical to the algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> constructed by Dong, Li and Mason, and that the bimodule <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> is identical to <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> which was constructed by Dong and Jiang. We also prove that the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>-bimodule <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> is isomorphic to <span><math><mi>U</mi><msub><mrow><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></msub><mo>/</mo><mi>U</mi><msubsup><mrow><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow><mrow><mo>−</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>/</mo><mi>T</mi></mrow></msubsup></math></span>, where <span><math><mi>U</mi><msub><mrow><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the subspace of degree <em>k</em> of the <span><math><mo>(</mo><mn>1</mn><mo>/</mo><mi>T</mi><mo>)</mo><mi>Z</mi></math></span>-graded universal enveloping algebra <span><math><mi>U</mi><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></math></span> of <em>V</em> with respect to <em>g</em> and <span><math><mi>U</mi><msubsup><mrow><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></mrow><mrow><mi>k</mi></mrow><mrow><mi>l</mi></mrow></msubsup></math></span> is some subspace of <span><math><mi>U</mi><msub><mrow><mo>(</mo><mi>V</mi><mo>[</mo><mi>g</mi><mo>]</mo><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msub></math></span>. And we show that all these bimodules <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> can be defined in a simpler way.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For any vertex operator algebra V, finite automorphism g of V of order T and m,n(1/T)Z+, we construct a family of associative algebras Ag,n(V) and Ag,n(V)Ag,m(V)-bimodules Ag,n,m(V) from the point of view of representation theory. We prove that the algebra Ag,n(V) is identical to the algebra Ag,n(V) constructed by Dong, Li and Mason, and that the bimodule Ag,n,m(V) is identical to Ag,n,m(V) which was constructed by Dong and Jiang. We also prove that the Ag,n(V)Ag,m(V)-bimodule Ag,n,m(V) is isomorphic to U(V[g])nm/U(V[g])nmm1/T, where U(V[g])k is the subspace of degree k of the (1/T)Z-graded universal enveloping algebra U(V[g]) of V with respect to g and U(V[g])kl is some subspace of U(V[g])k. And we show that all these bimodules Ag,n,m(V) can be defined in a simpler way.
分享
查看原文
与 VOA 相关的扭曲双模和通用包络代数
对于任意顶点算子代数 V、V 的阶数为 T 的有限自变量 g 以及 m,n∈(1/T)Z+,我们从表示论的角度构建了关联代数 Ag,n(V)族和 Ag,n(V)-Ag,m(V)- 双模块 Ag,n,m(V)。我们证明了代数 Ag,n(V) 与董(Dong)、李(Li)和梅森(Mason)构造的代数 Ag,n(V) 完全相同,而双模 Ag,n,m(V) 与董(Dong)和蒋(Jiang)构造的双模 Ag,n,m(V) 完全相同。我们还证明了 Ag,n(V)-Ag,m(V)-双模块 Ag,n,m(V) 与 U(V[g])n-m/U(V[g])n-m-1/T 同构,其中 U(V[g])k 是 V 的 (1/T)Z 阶通用包络代数 U(V[g]) 关于 g 的 k 度子空间,U(V[g])kl 是 U(V[g])k 的某个子空间。我们将证明所有这些双模子 Ag,n,m(V) 都可以用更简单的方法定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信