Fourth-order phase field modelling of brittle fracture with strong form meshless method

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Izaz Ali , Gašper Vuga , Boštjan Mavrič , Umut Hanoglu , Božidar Šarler
{"title":"Fourth-order phase field modelling of brittle fracture with strong form meshless method","authors":"Izaz Ali ,&nbsp;Gašper Vuga ,&nbsp;Boštjan Mavrič ,&nbsp;Umut Hanoglu ,&nbsp;Božidar Šarler","doi":"10.1016/j.enganabound.2024.106025","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to find a solution for crack propagation in 2D brittle elastic material using the local radial basis function collocation method. The staggered solution of the fourth-order phase field and mechanical model is structured with polyharmonic spline shape functions augmented with polynomials. Two benchmark tests are carried out to assess the performance of the method. First, a non-cracked square plate problem is solved under tensile loading to validate the implementation by comparing the numerical and analytical solutions. The analysis shows that the iterative process converges even with a large loading step, whereas the non-iterative process requires smaller steps for convergence to the analytical solution. In the second case, a single-edge cracked square plate subjected to tensile loading is solved, and the results show a good agreement with the reference solution. The effects of the incremental loading, length scale parameter, and mesh convergence for regular and scattered nodes are demonstrated. This study presents a pioneering attempt to solve the phase field crack propagation using a strong-form meshless method. The results underline the essential role of the represented method for an accurate and efficient solution to crack propagation. It also provides valuable insights for future research towards more sophisticated material models.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 106025"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004983","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to find a solution for crack propagation in 2D brittle elastic material using the local radial basis function collocation method. The staggered solution of the fourth-order phase field and mechanical model is structured with polyharmonic spline shape functions augmented with polynomials. Two benchmark tests are carried out to assess the performance of the method. First, a non-cracked square plate problem is solved under tensile loading to validate the implementation by comparing the numerical and analytical solutions. The analysis shows that the iterative process converges even with a large loading step, whereas the non-iterative process requires smaller steps for convergence to the analytical solution. In the second case, a single-edge cracked square plate subjected to tensile loading is solved, and the results show a good agreement with the reference solution. The effects of the incremental loading, length scale parameter, and mesh convergence for regular and scattered nodes are demonstrated. This study presents a pioneering attempt to solve the phase field crack propagation using a strong-form meshless method. The results underline the essential role of the represented method for an accurate and efficient solution to crack propagation. It also provides valuable insights for future research towards more sophisticated material models.
用强形式无网格法建立脆性断裂的四阶相场模型
本研究旨在利用局部径向基函数搭配法找到二维脆性弹性材料中裂纹传播的解决方案。四阶相场和力学模型的交错解采用多谐波样条形状函数结构,并用多项式增强。为评估该方法的性能,进行了两项基准测试。首先,在拉伸载荷下求解了一个无裂纹方形板问题,通过比较数值解和分析解来验证方法的实施。分析表明,即使加载步长较大,迭代过程也能收敛,而非迭代过程需要较小的步长才能收敛到分析解。在第二种情况下,对承受拉伸载荷的单边开裂方形板进行了求解,结果显示与参考解十分吻合。演示了增量加载、长度尺度参数以及规则节点和分散节点的网格收敛的影响。本研究是使用强形式无网格法解决相场裂纹扩展问题的一次开创性尝试。研究结果强调了所代表的方法对于准确、高效地解决裂纹扩展问题的重要作用。它还为未来研究更复杂的材料模型提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信