{"title":"Synovial regulatory T cells expressing ST2 deteriorate joint inflammation through the suppression of immunoregulatory eosinophils","authors":"","doi":"10.1016/j.jaut.2024.103333","DOIUrl":null,"url":null,"abstract":"<div><div>Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic polyarthritis. It is well-established that helper T cells play crucial roles in the development and deterioration of RA. Recent studies also revealed the significant roles of regulatory T (Treg) cells in this context. Although Treg cells distributed in peripheral tissues exhibit various functions, the characteristics of synovial Treg cells remain unknown. In this study, we demonstrate that synovial Treg cells exacerbate synovial inflammation by reducing the number of immunoregulatory eosinophils through competitive consumption of IL-33. Synovial Treg cells expressed ST2 in a murine arthritis model, and surprisingly, Treg-specific ST2 knockout (ST2<sup>ΔTreg</sup>) mice exhibited attenuated arthritis. In ST2<sup>ΔTreg</sup> mice, an increase in immunoregulatory synovial eosinophils was observed. Additionally, immunoregulatory eosinophils were found to express ST2, and ST2-expressing Treg cells controlled the abundance of immunoregulatory eosinophils, possibly by consuming IL-33. Our results highlight that a subset of synovial Treg cells possesses the machinery to worsen arthritis by suppressing eosinophils. In the future landscape where Treg cell-based therapies are employed for autoimmune diseases, it is important to comprehend the characteristics of disease-related Treg cells. Understanding these aspects is crucial for ensuring safer treatment modalities that do not inadvertently worsen the diseases.</div></div>","PeriodicalId":15245,"journal":{"name":"Journal of autoimmunity","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896841124001677","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic polyarthritis. It is well-established that helper T cells play crucial roles in the development and deterioration of RA. Recent studies also revealed the significant roles of regulatory T (Treg) cells in this context. Although Treg cells distributed in peripheral tissues exhibit various functions, the characteristics of synovial Treg cells remain unknown. In this study, we demonstrate that synovial Treg cells exacerbate synovial inflammation by reducing the number of immunoregulatory eosinophils through competitive consumption of IL-33. Synovial Treg cells expressed ST2 in a murine arthritis model, and surprisingly, Treg-specific ST2 knockout (ST2ΔTreg) mice exhibited attenuated arthritis. In ST2ΔTreg mice, an increase in immunoregulatory synovial eosinophils was observed. Additionally, immunoregulatory eosinophils were found to express ST2, and ST2-expressing Treg cells controlled the abundance of immunoregulatory eosinophils, possibly by consuming IL-33. Our results highlight that a subset of synovial Treg cells possesses the machinery to worsen arthritis by suppressing eosinophils. In the future landscape where Treg cell-based therapies are employed for autoimmune diseases, it is important to comprehend the characteristics of disease-related Treg cells. Understanding these aspects is crucial for ensuring safer treatment modalities that do not inadvertently worsen the diseases.
期刊介绍:
The Journal of Autoimmunity serves as the primary publication for research on various facets of autoimmunity. These include topics such as the mechanism of self-recognition, regulation of autoimmune responses, experimental autoimmune diseases, diagnostic tests for autoantibodies, as well as the epidemiology, pathophysiology, and treatment of autoimmune diseases. While the journal covers a wide range of subjects, it emphasizes papers exploring the genetic, molecular biology, and cellular aspects of the field.
The Journal of Translational Autoimmunity, on the other hand, is a subsidiary journal of the Journal of Autoimmunity. It focuses specifically on translating scientific discoveries in autoimmunity into clinical applications and practical solutions. By highlighting research that bridges the gap between basic science and clinical practice, the Journal of Translational Autoimmunity aims to advance the understanding and treatment of autoimmune diseases.