A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor.

IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mariia Zmyslia, Michael J Capper, Michael Grimmeisen, Kerstin Sartory, Benedikt Deuringer, Mohamed Abdelsalam, Kaiwei Shen, Manfred Jung, Wolfgang Sippl, Hans-Georg Koch, Laurine Kaul, Regine Süss, Jesko Köhnke, Claudia Jessen-Trefzer
{"title":"A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor.","authors":"Mariia Zmyslia, Michael J Capper, Michael Grimmeisen, Kerstin Sartory, Benedikt Deuringer, Mohamed Abdelsalam, Kaiwei Shen, Manfred Jung, Wolfgang Sippl, Hans-Georg Koch, Laurine Kaul, Regine Süss, Jesko Köhnke, Claudia Jessen-Trefzer","doi":"10.1039/d4cb00127c","DOIUrl":null,"url":null,"abstract":"<p><p>Nitroreductases are important enzymes for a variety of applications, including cancer therapy and bioremediation. They often require encapsulation to improve stability and activity. We focus on genetically encoded encapsulation of nitroreductases within protein capsids, like encapsulins. Our study showcases the encapsulation of nitroreductase NfsB as functional dimers within encapsulins, which enhances protein activity and stability in diverse conditions. Mutations within the pore region are beneficial for activity of the encapsulated enzyme, potentially by increasing diffusion rates. Cryogenic electron microscopy reveals the overall architecture of the encapsulated dimeric NfsB within the nanoreactor environment and identifies multiple pore states in the shell. These findings highlight the potential of encapsulins as versatile tools for enhancing enzyme performance across various fields.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4cb00127c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitroreductases are important enzymes for a variety of applications, including cancer therapy and bioremediation. They often require encapsulation to improve stability and activity. We focus on genetically encoded encapsulation of nitroreductases within protein capsids, like encapsulins. Our study showcases the encapsulation of nitroreductase NfsB as functional dimers within encapsulins, which enhances protein activity and stability in diverse conditions. Mutations within the pore region are beneficial for activity of the encapsulated enzyme, potentially by increasing diffusion rates. Cryogenic electron microscopy reveals the overall architecture of the encapsulated dimeric NfsB within the nanoreactor environment and identifies multiple pore states in the shell. These findings highlight the potential of encapsulins as versatile tools for enhancing enzyme performance across various fields.

纳米工程串联硝基还原酶:设计稳健的原药激活纳米反应器。
硝基还原酶是一种重要的酶,可用于多种用途,包括癌症治疗和生物修复。它们通常需要封装以提高稳定性和活性。我们的研究重点是通过基因编码将硝基还原酶封装在蛋白囊(如封装蛋白)中。我们的研究展示了将硝基还原酶 NfsB 作为功能性二聚体封装在封装蛋白中,从而提高了蛋白质在不同条件下的活性和稳定性。孔隙区域内的突变有利于提高封装酶的活性,可能是通过增加扩散速率。低温电子显微镜揭示了封装二聚体 NfsB 在纳米反应器环境中的整体结构,并确定了外壳中的多种孔状态。这些发现凸显了封装蛋白作为多功能工具在提高各领域酶性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信