Culture Expansion Alters Human Bone Marrow-Derived Mesenchymal Stem Cell Production of Osteoarthritis-Relevant Cytokines and Growth Factors.

IF 4.4 1区 医学 Q1 ORTHOPEDICS
James E Voos, Andrew Moyal, Ryan Furdock, Arnold I Caplan, Tracey L Bonfield, Jacob G Calcei
{"title":"Culture Expansion Alters Human Bone Marrow-Derived Mesenchymal Stem Cell Production of Osteoarthritis-Relevant Cytokines and Growth Factors.","authors":"James E Voos, Andrew Moyal, Ryan Furdock, Arnold I Caplan, Tracey L Bonfield, Jacob G Calcei","doi":"10.1016/j.arthro.2024.10.034","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purposes of this study were to characterize the human bone marrow-derived mesenchymal stem cells (BM-MSCs) production of osteoarthritis-relevant cytokines and growth factors as they are purified and multiplied, a process termed culture expansion, and to compare the immunomodulatory potential of BM-MSCs based on source and medium used for culture expansion.</p><p><strong>Methods: </strong>BM-MSCs were obtained from iliac crest bone marrow aspirates of 4 healthy donors. These 4 BM-MSC cell lines underwent 4 rounds, or \"passages,\" of the institutional culture expansion protocol, using institutional culture media. The secretory molecules known to play a role in osteoarthritis-related inflammatory immune response, cartilage degradation, and patient symptoms, together called the BM-MSC \"secretome,\" were measured at each passage. Three lines of commercially available BM-MSCs from healthy donors underwent culture expansion by the same protocol, using commercial culture media. The commercial BM-MSCs secretome and the institutional BM-MSCs secretome were compared at each passage. Significance was set at P < .05.</p><p><strong>Results: </strong>Institutional BM-MSCs produced less interleukin-6 at passages 3 (237 ± 113 pg/mL) and 4 (237 ± 113 pg/mL) compared with passages 1 (884 ± 97 pg/mL) and 2 (1071 ± 129 pg/mL; P < .01). Institutional BM-MSCs produced more macrophage inflammatory protein 3-alpha at passage 4 than at passage 1 (106 ± 41 vs 32 ± 7 pg/mL; P < .01). Across passages of culture expansion, institutional BM-MSCs grown on institutional medium expressed more interleukin-6 (P < .001), interleukin-10 (P < .001), interleukin-1 beta (P < .001), tumor necrosis factor alpha (P = .004), and vascular endothelial growth factor C (P = .003) than commercially available BM-MSCs grown on commercial medium.</p><p><strong>Conclusions: </strong>Culture expansion alters key molecules within the BM-MSC secretome. Additionally, differences in BM-MSC source and culture medium alter the BM-MSC secretome and its immunomodulatory potential.</p><p><strong>Clinical relevance: </strong>This study characterizes the in-vitro changes in BM-MSC secretome during culture expansion based on the cell source and culture medium. It suggests nonequivalence of culture-expanded BM-MSC therapies obtained from different donors using different culture media, even if delivering equivalent numbers of BM-MSCs.</p>","PeriodicalId":55459,"journal":{"name":"Arthroscopy-The Journal of Arthroscopic and Related Surgery","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthroscopy-The Journal of Arthroscopic and Related Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.arthro.2024.10.034","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The purposes of this study were to characterize the human bone marrow-derived mesenchymal stem cells (BM-MSCs) production of osteoarthritis-relevant cytokines and growth factors as they are purified and multiplied, a process termed culture expansion, and to compare the immunomodulatory potential of BM-MSCs based on source and medium used for culture expansion.

Methods: BM-MSCs were obtained from iliac crest bone marrow aspirates of 4 healthy donors. These 4 BM-MSC cell lines underwent 4 rounds, or "passages," of the institutional culture expansion protocol, using institutional culture media. The secretory molecules known to play a role in osteoarthritis-related inflammatory immune response, cartilage degradation, and patient symptoms, together called the BM-MSC "secretome," were measured at each passage. Three lines of commercially available BM-MSCs from healthy donors underwent culture expansion by the same protocol, using commercial culture media. The commercial BM-MSCs secretome and the institutional BM-MSCs secretome were compared at each passage. Significance was set at P < .05.

Results: Institutional BM-MSCs produced less interleukin-6 at passages 3 (237 ± 113 pg/mL) and 4 (237 ± 113 pg/mL) compared with passages 1 (884 ± 97 pg/mL) and 2 (1071 ± 129 pg/mL; P < .01). Institutional BM-MSCs produced more macrophage inflammatory protein 3-alpha at passage 4 than at passage 1 (106 ± 41 vs 32 ± 7 pg/mL; P < .01). Across passages of culture expansion, institutional BM-MSCs grown on institutional medium expressed more interleukin-6 (P < .001), interleukin-10 (P < .001), interleukin-1 beta (P < .001), tumor necrosis factor alpha (P = .004), and vascular endothelial growth factor C (P = .003) than commercially available BM-MSCs grown on commercial medium.

Conclusions: Culture expansion alters key molecules within the BM-MSC secretome. Additionally, differences in BM-MSC source and culture medium alter the BM-MSC secretome and its immunomodulatory potential.

Clinical relevance: This study characterizes the in-vitro changes in BM-MSC secretome during culture expansion based on the cell source and culture medium. It suggests nonequivalence of culture-expanded BM-MSC therapies obtained from different donors using different culture media, even if delivering equivalent numbers of BM-MSCs.

培养扩增可改变人骨髓间充质干细胞产生骨关节炎相关细胞因子和生长因子的情况。
目的:本研究的目的是描述人骨髓间充质干细胞(BM-MSCs)在纯化和增殖过程中产生骨关节炎相关细胞因子和生长因子的特性,这一过程被称为培养扩增,并根据来源和培养扩增所用的培养基比较 BM-MSCs 的免疫调节潜力:方法:从四名健康捐献者的髂嵴骨髓抽吸物中获得 BM-间充质干细胞。这四种 BM-MSC 细胞系经过了四轮或 "传代 "的机构培养扩增方案,并使用了机构培养基。每次传代时,都会对已知在与 OA 相关的炎症免疫反应、软骨降解和患者症状中发挥作用的分泌分子(合称 BM-间充质干细胞 "分泌组")进行测定。来自健康捐献者的三系市售 BM-MSCs 按照相同的方案,使用商业培养基进行了培养扩增。在每个培养阶段,将商用骨髓造血干细胞的分泌组与机构骨髓造血干细胞的分泌组进行比较。显著性以 pResults 为标准:与第 1 期(884±97 pg/mL)和第 2 期(1071±129 pg/mL;p)相比,机构 BM-MSCs 在第 3 期(237±113 pg/mL)和第 4 期(237±113 pg/mL)产生的 IL-6 较少:培养扩增改变了间充质干细胞分泌组中的关键分子。此外,BM-间充质干细胞来源和培养基的不同也会改变BM-间充质干细胞分泌组及其免疫调节潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
17.00%
发文量
555
审稿时长
58 days
期刊介绍: Nowhere is minimally invasive surgery explained better than in Arthroscopy, the leading peer-reviewed journal in the field. Every issue enables you to put into perspective the usefulness of the various emerging arthroscopic techniques. The advantages and disadvantages of these methods -- along with their applications in various situations -- are discussed in relation to their efficiency, efficacy and cost benefit. As a special incentive, paid subscribers also receive access to the journal expanded website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信