{"title":"Exploring Testicular Descent: Recent Findings and Future Prospects in Canine Cryptorchidism.","authors":"Paulina Krzeminska","doi":"10.1159/000542245","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Canine cryptorchidism, manifested by an abnormal testicular position, poses significant health risks and reproductive challenges in affected males. Despite a high prevalence, estimated at up to 10% in the canine population, a comprehensive understanding of its pathogenesis remains elusive. Studies in human cryptorchids and knockout mice have identified key factors involved in testicular descent, including INSL3, RXFP2, and AR. To date, only three DNA variants, found in the RXFP2, HMGA2, and KAT6A genes, have been associated with canine cryptorchidism.</p><p><strong>Summary: </strong>This review briefly summarizes current knowledge on testicular descent and the factors that regulate this process, based on cryptorchidism in humans and mice. It also highlights recent findings related to canine cryptorchidism, focusing on the INSL3, HMGA2, and KAT6A genes. The most significant results are discussed, with an emphasis on the role of the epididymis in testicular descent. This report presents insights that may facilitate further research aiming to broaden our understanding of canine cryptorchidism pathogenesis.</p><p><strong>Key messages: </strong>DNA polymorphism in the KAT6A gene, associated with changes in global H3K9 acetylation, as well as the DNA methylation pattern in the INSL3 gene, suggest that further research should strongly focus on epigenetic modifications. In addition, the development of the epididymo-testicular junction and the link between cryptorchidism prevalence and dog size should be further investigated.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":" ","pages":"1-13"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sexual Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000542245","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Canine cryptorchidism, manifested by an abnormal testicular position, poses significant health risks and reproductive challenges in affected males. Despite a high prevalence, estimated at up to 10% in the canine population, a comprehensive understanding of its pathogenesis remains elusive. Studies in human cryptorchids and knockout mice have identified key factors involved in testicular descent, including INSL3, RXFP2, and AR. To date, only three DNA variants, found in the RXFP2, HMGA2, and KAT6A genes, have been associated with canine cryptorchidism.
Summary: This review briefly summarizes current knowledge on testicular descent and the factors that regulate this process, based on cryptorchidism in humans and mice. It also highlights recent findings related to canine cryptorchidism, focusing on the INSL3, HMGA2, and KAT6A genes. The most significant results are discussed, with an emphasis on the role of the epididymis in testicular descent. This report presents insights that may facilitate further research aiming to broaden our understanding of canine cryptorchidism pathogenesis.
Key messages: DNA polymorphism in the KAT6A gene, associated with changes in global H3K9 acetylation, as well as the DNA methylation pattern in the INSL3 gene, suggest that further research should strongly focus on epigenetic modifications. In addition, the development of the epididymo-testicular junction and the link between cryptorchidism prevalence and dog size should be further investigated.
期刊介绍:
Recent discoveries in experimental and clinical research have led to impressive advances in our knowledge of the genetic and environmental mechanisms governing sex determination and differentiation, their evolution as well as the mutations or endocrine and metabolic abnormalities that interfere with normal gonadal development. ‘Sexual Development’ provides a unique forum for this rapidly expanding field. Its broad scope covers all aspects of genetics, molecular biology, embryology, endocrinology, evolution and pathology of sex determination and differentiation in humans and animals. It publishes high-quality original research manuscripts, review articles, short reports, case reports and commentaries. An internationally renowned and multidisciplinary editorial team of three chief editors, ten prominent scientists serving as section editors, and a distinguished panel of editorial board members ensures fast and author-friendly editorial processing and peer reviewing.