{"title":"Potential of ex vivo organotypic slice cultures in neuro-oncology.","authors":"Ariane Steindl, Manuel Valiente","doi":"10.1093/neuonc/noae195","DOIUrl":null,"url":null,"abstract":"<p><p>Over recent decades, in vitro and in vivo models have significantly advanced brain cancer research; however, each presents distinct challenges for accurately mimicking in situ conditions. In response, organotypic slice cultures have emerged as a promising model recapitulating precisely specific in vivo phenotypes through an ex vivo approach. Ex vivo organotypic brain slice models can integrate biological relevance and patient-specific variability early in drug discovery, thereby aiming for more precise treatment stratification. However, the challenges of obtaining representative fresh brain tissue, ensuring reproducibility, and maintaining essential central nervous system (CNS)-specific conditions reflecting the in situ situation over time have limited the direct application of ex vivo organotypic slice cultures in robust clinical trials. In this review, we explore the benefits and possible limitations of ex vivo organotypic brain slice cultures in neuro-oncological research. Additionally, we share insights from clinical experts in neuro-oncology on how to overcome these current limitations and improve the practical application of organotypic brain slice cultures beyond academic research.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae195","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Over recent decades, in vitro and in vivo models have significantly advanced brain cancer research; however, each presents distinct challenges for accurately mimicking in situ conditions. In response, organotypic slice cultures have emerged as a promising model recapitulating precisely specific in vivo phenotypes through an ex vivo approach. Ex vivo organotypic brain slice models can integrate biological relevance and patient-specific variability early in drug discovery, thereby aiming for more precise treatment stratification. However, the challenges of obtaining representative fresh brain tissue, ensuring reproducibility, and maintaining essential central nervous system (CNS)-specific conditions reflecting the in situ situation over time have limited the direct application of ex vivo organotypic slice cultures in robust clinical trials. In this review, we explore the benefits and possible limitations of ex vivo organotypic brain slice cultures in neuro-oncological research. Additionally, we share insights from clinical experts in neuro-oncology on how to overcome these current limitations and improve the practical application of organotypic brain slice cultures beyond academic research.
期刊介绍:
Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field.
The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.