{"title":"Enhancing Single-Cell RNA-Seq Data Completeness With a Graph Learning Framework.","authors":"Snehalika Lall, Sumanta Ray, Sanghamitra Bandyopadhyay","doi":"10.1109/TCBB.2024.3492384","DOIUrl":null,"url":null,"abstract":"<p><p>Single cell RNA sequencing (scRNA-seq) is a powerful tool to capture gene expression snapshots in individual cells. However, a low amount of RNA in the individual cells results in dropout events, which introduce huge zero counts in the single cell expression matrix. We have developed VAImpute, a variational graph autoencoder based imputation technique that learns the inherent distribution of a large network/graph constructed from the scRNA-seq data leveraging copula correlation ($Ccor$) among cells/genes. The trained model is utilized to predict the dropouts events by computing the probability of all non-edges (cell-gene) in the network. We devise an algorithm to impute the missing expression values of the detected dropouts. The performance of the proposed model is assessed on both simulated and real scRNA-seq datasets, comparing it to established single-cell imputation methods. VAImpute yields significant improvements to detect dropouts, thereby achieving superior performance in cell clustering, detecting rare cells, and differential expression.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":"64-72"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3492384","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Single cell RNA sequencing (scRNA-seq) is a powerful tool to capture gene expression snapshots in individual cells. However, a low amount of RNA in the individual cells results in dropout events, which introduce huge zero counts in the single cell expression matrix. We have developed VAImpute, a variational graph autoencoder based imputation technique that learns the inherent distribution of a large network/graph constructed from the scRNA-seq data leveraging copula correlation ($Ccor$) among cells/genes. The trained model is utilized to predict the dropouts events by computing the probability of all non-edges (cell-gene) in the network. We devise an algorithm to impute the missing expression values of the detected dropouts. The performance of the proposed model is assessed on both simulated and real scRNA-seq datasets, comparing it to established single-cell imputation methods. VAImpute yields significant improvements to detect dropouts, thereby achieving superior performance in cell clustering, detecting rare cells, and differential expression.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system