Reinforcement Learning-Based H Control of 2-D Markov Jump Roesser Systems With Optimal Disturbance Attenuation.

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiacheng Wu, Bosen Lian, Hongye Su, Yang Zhu
{"title":"Reinforcement Learning-Based H<sub>∞</sub> Control of 2-D Markov Jump Roesser Systems With Optimal Disturbance Attenuation.","authors":"Jiacheng Wu, Bosen Lian, Hongye Su, Yang Zhu","doi":"10.1109/TNNLS.2024.3487760","DOIUrl":null,"url":null,"abstract":"<p><p>This article investigates model-free reinforcement learning (RL)-based H<sub>∞</sub> control problem for discrete-time 2-D Markov jump Roesser systems ( 2 -D MJRSs) with optimal disturbance attenuation level. This is compared to existing studies on H<sub>∞</sub> control of 2-D MJRSs with optimal disturbance attenuation levels that are off-line and use full system dynamics. We design a comprehensive model-free RL algorithm to solve optimal H<sub>∞</sub> control policy, optimize disturbance attenuation level, and search for the initial stabilizing control policy, via online horizontal and vertical data along 2-D MJRSs trajectories. The optimal disturbance attenuation level is obtained by solving a set of linear matrix inequalities based on online measurement data. The initial stabilizing control policy is obtained via a data-driven parallel value iteration (VI) algorithm. Besides, we further certify the performance including the convergence of the RL algorithm and the asymptotic mean-square stability of the closed-loop systems. Finally, simulation results and comparisons demonstrate the effectiveness of the proposed algorithms.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2024.3487760","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates model-free reinforcement learning (RL)-based H control problem for discrete-time 2-D Markov jump Roesser systems ( 2 -D MJRSs) with optimal disturbance attenuation level. This is compared to existing studies on H control of 2-D MJRSs with optimal disturbance attenuation levels that are off-line and use full system dynamics. We design a comprehensive model-free RL algorithm to solve optimal H control policy, optimize disturbance attenuation level, and search for the initial stabilizing control policy, via online horizontal and vertical data along 2-D MJRSs trajectories. The optimal disturbance attenuation level is obtained by solving a set of linear matrix inequalities based on online measurement data. The initial stabilizing control policy is obtained via a data-driven parallel value iteration (VI) algorithm. Besides, we further certify the performance including the convergence of the RL algorithm and the asymptotic mean-square stability of the closed-loop systems. Finally, simulation results and comparisons demonstrate the effectiveness of the proposed algorithms.

基于强化学习的 H∞ 控制二维马尔可夫跃迁 Roesser 系统与最佳干扰衰减。
本文研究了基于无模型强化学习(RL)的具有最优干扰衰减水平的离散时间二维马尔可夫跃迁罗瑟系统(2 -D MJRSs)的H∞控制问题。这与现有的关于具有最优干扰衰减水平的二维马尔可夫跃迁罗塞斯系统的 H∞ 控制的研究进行了比较,后者是离线的,并且使用了完整的系统动力学。我们设计了一种全面的无模型 RL 算法,通过沿二维 MJRS 轨迹的在线水平和垂直数据,求解最优 H∞ 控制策略、优化扰动衰减水平并搜索初始稳定控制策略。最佳扰动衰减水平是通过求解一组基于在线测量数据的线性矩阵不等式得到的。初始稳定控制策略通过数据驱动的并行值迭代(VI)算法获得。此外,我们还进一步验证了 RL 算法的收敛性和闭环系统的渐近均方稳定性等性能。最后,仿真结果和比较证明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信