DKK1+ tumor cells inhibited the infiltration of CCL19+ fibroblasts and plasma cells contributing to worse immunotherapy response in hepatocellular carcinoma.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Guangyu Fan, Ruyun Gao, Tongji Xie, Lin Li, Le Tang, Xiaohong Han, Yuankai Shi
{"title":"DKK1+ tumor cells inhibited the infiltration of CCL19+ fibroblasts and plasma cells contributing to worse immunotherapy response in hepatocellular carcinoma.","authors":"Guangyu Fan, Ruyun Gao, Tongji Xie, Lin Li, Le Tang, Xiaohong Han, Yuankai Shi","doi":"10.1038/s41419-024-07195-3","DOIUrl":null,"url":null,"abstract":"<p><p>Intra-tumor immune infiltration plays a pivotal role in the interaction with tumor cells in hepatocellular carcinoma (HCC). However, its phenotype and related spatial structure remained elusive. To address these limitations, we conducted a comprehensive study combining spatial data (38,191 spots from eight samples) and single-cell data (56,022 cells from 20 samples). Our analysis revealed two distinct infiltration patterns: immune exclusion and immune activation. Plasma cells emerged as the primary cell type within intra-tumor immune clusters. Notably, we observed the co-location of CCL19+ fibroblasts with plasma cells, which secrete chemokines and promote T-cell activation and leukocyte migration. Conversely, in immune-exclusion samples, this co-location was primarily observed in the adjacent normal area. This co-localization correlated with T cell infiltration and the formation of tertiary lymphoid structures, validated by multiplex immunofluorescence conducted on twenty HCC samples. Both CCL19+ fibroblasts and plasma cells were associated with favorable survival outcomes. In an immunotherapy cohort, HCC patients who responded favorably exhibited higher infiltration of CCL19+ fibroblasts and plasma cells. Additionally, we observed the accumulation of DKK1+ tumor cells within the tumor area in immune-exclusion samples, particularly at the tumor boundary, which inhibited the infiltration of CCL19+ fibroblasts and plasma cells into the tumor area. Furthermore, in immune-exclusion samples, the SPP1 signaling pathway demonstrated the highest activity in communication between tumor and immune clusters, and CCL19-CCR7 played a pivotal role in the self-communication of immune clusters. This study elucidates immune exclusion and immune activation patterns in HCC and identifies relevant factors contributing to immune resistance.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07195-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intra-tumor immune infiltration plays a pivotal role in the interaction with tumor cells in hepatocellular carcinoma (HCC). However, its phenotype and related spatial structure remained elusive. To address these limitations, we conducted a comprehensive study combining spatial data (38,191 spots from eight samples) and single-cell data (56,022 cells from 20 samples). Our analysis revealed two distinct infiltration patterns: immune exclusion and immune activation. Plasma cells emerged as the primary cell type within intra-tumor immune clusters. Notably, we observed the co-location of CCL19+ fibroblasts with plasma cells, which secrete chemokines and promote T-cell activation and leukocyte migration. Conversely, in immune-exclusion samples, this co-location was primarily observed in the adjacent normal area. This co-localization correlated with T cell infiltration and the formation of tertiary lymphoid structures, validated by multiplex immunofluorescence conducted on twenty HCC samples. Both CCL19+ fibroblasts and plasma cells were associated with favorable survival outcomes. In an immunotherapy cohort, HCC patients who responded favorably exhibited higher infiltration of CCL19+ fibroblasts and plasma cells. Additionally, we observed the accumulation of DKK1+ tumor cells within the tumor area in immune-exclusion samples, particularly at the tumor boundary, which inhibited the infiltration of CCL19+ fibroblasts and plasma cells into the tumor area. Furthermore, in immune-exclusion samples, the SPP1 signaling pathway demonstrated the highest activity in communication between tumor and immune clusters, and CCL19-CCR7 played a pivotal role in the self-communication of immune clusters. This study elucidates immune exclusion and immune activation patterns in HCC and identifies relevant factors contributing to immune resistance.

DKK1+ 肿瘤细胞抑制了 CCL19+ 成纤维细胞和浆细胞的浸润,从而导致肝细胞癌的免疫治疗反应更差。
在肝细胞癌(HCC)中,瘤内免疫浸润在与肿瘤细胞的相互作用中起着关键作用。然而,其表型和相关的空间结构仍然难以捉摸。为了解决这些局限性,我们结合空间数据(来自 8 个样本的 38,191 个点)和单细胞数据(来自 20 个样本的 56,022 个细胞)进行了一项综合研究。我们的分析揭示了两种不同的浸润模式:免疫排斥和免疫激活。浆细胞是肿瘤内免疫集群的主要细胞类型。值得注意的是,我们观察到 CCL19+ 成纤维细胞与浆细胞共定位,浆细胞分泌趋化因子,促进 T 细胞活化和白细胞迁移。相反,在免疫排斥样本中,这种共定位主要出现在邻近的正常区域。这种共定位与 T 细胞浸润和三级淋巴结构的形成有关,对 20 个 HCC 样本进行的多重免疫荧光验证了这一点。CCL19+成纤维细胞和浆细胞都与良好的生存结果有关。在免疫疗法队列中,反应良好的 HCC 患者表现出较高的 CCL19+ 成纤维细胞和浆细胞浸润。此外,在免疫排斥样本中,我们观察到 DKK1+ 肿瘤细胞在肿瘤区域内聚集,尤其是在肿瘤边界,这抑制了 CCL19+ 成纤维细胞和浆细胞向肿瘤区域的浸润。此外,在免疫排斥样本中,SPP1 信号通路在肿瘤和免疫集群之间的通讯中表现出最高的活性,而 CCL19-CCR7 在免疫集群的自我通讯中起着关键作用。这项研究阐明了HCC的免疫排斥和免疫激活模式,并确定了导致免疫抵抗的相关因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信