{"title":"Trem2/Tyrobp Signaling Protects Against Aortic Dissection and Rupture by Inhibiting Macrophage Activation in Mice.","authors":"Zenghui Zhang, Maoxiong Wu, Lei Yao, Weibin Zhou, Xiao Liu, Zhiteng Chen, Ping Hua, Leibo Xu, Lei Lv, Chiyu Liu, Chunling Huang, Sixu Chen, Zhaoqi Huang, Yuna Huang, Jiaqi He, Tingfeng Chen, Jingfeng Wang, Woliang Yuan, Zhaoyu Liu, Yangxin Chen","doi":"10.1161/ATVBAHA.124.321429","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The development of aortic dissection (AD) is closely associated with inflammation. The Trem2 (triggering receptor expressed on myeloid cells 2)/Tyrobp (TYRO protein tyrosine kinase-binding protein) signaling pathway critically regulates innate immunity and has emerged as an important target in cardiovascular diseases; however, its role in AD remains unclear.</p><p><strong>Methods: </strong>Transcriptome data from human and mouse ADs were used to perform differentially expressed gene-based protein-protein interaction network analyses. <i>Tyrobp</i> knockout (Tyrobp<sup>-/-</sup>), myeloid cell-specific <i>Tyrobp</i><sup>-/-</sup> (Tyrobp<sup>fl/fl</sup> Lyz2<sup>cre</sup>), and <i>Trem2</i> knockout (Trem2<sup>-/</sup><sup>-</sup>) mice were given β-aminopropionitrile monofumarate in drinking water to induce AD. To dissect the role of macrophages in <i>Tyrobp</i> deficiency-mediated AD progression, macrophages were depleted using clodronate liposomes. Bulk and single-cell RNA sequencing, immunofluorescence staining, and quantitative real-time polymerase chain reaction were performed to assess inflammation and the underlying mechanisms of Tyrobp in AD.</p><p><strong>Results: </strong>Network analysis identified <i>Tyrobp</i> as a hub gene of AD, with elevated levels observed in both human and mouse ADs. Global deletion and myeloid cell-specific deficiency of <i>Tyrobp</i> in mice significantly increased AD incidence and exacerbated extracellular matrix degradation and macrophage infiltration within the aortic wall. Macrophage depletion mitigated the adverse effects of <i>Tyrobp</i> deficiency on AD progression. Additionally, <i>Tyrobp</i> deficiency enhanced TLR (Toll-like receptor)-4 signaling and macrophage activation, which were abrogated by TLR4 inhibitors. Furthermore, deletion of the Tyrobp-associated receptor <i>Trem2</i> significantly aggravated mouse AD development, whereas Trem2 agonist treatment conferred protection against AD.</p><p><strong>Conclusions: </strong>Our findings suggest a novel role for the Trem2/Tyrobp axis in AD development in mice. Enhancement of Trem2/Tyrobp signaling may represent a promising strategy for the prevention and treatment of AD. Future studies to clarify the role of Trem2/Tyrobp in human AD are warranted.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.124.321429","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The development of aortic dissection (AD) is closely associated with inflammation. The Trem2 (triggering receptor expressed on myeloid cells 2)/Tyrobp (TYRO protein tyrosine kinase-binding protein) signaling pathway critically regulates innate immunity and has emerged as an important target in cardiovascular diseases; however, its role in AD remains unclear.
Methods: Transcriptome data from human and mouse ADs were used to perform differentially expressed gene-based protein-protein interaction network analyses. Tyrobp knockout (Tyrobp-/-), myeloid cell-specific Tyrobp-/- (Tyrobpfl/fl Lyz2cre), and Trem2 knockout (Trem2-/-) mice were given β-aminopropionitrile monofumarate in drinking water to induce AD. To dissect the role of macrophages in Tyrobp deficiency-mediated AD progression, macrophages were depleted using clodronate liposomes. Bulk and single-cell RNA sequencing, immunofluorescence staining, and quantitative real-time polymerase chain reaction were performed to assess inflammation and the underlying mechanisms of Tyrobp in AD.
Results: Network analysis identified Tyrobp as a hub gene of AD, with elevated levels observed in both human and mouse ADs. Global deletion and myeloid cell-specific deficiency of Tyrobp in mice significantly increased AD incidence and exacerbated extracellular matrix degradation and macrophage infiltration within the aortic wall. Macrophage depletion mitigated the adverse effects of Tyrobp deficiency on AD progression. Additionally, Tyrobp deficiency enhanced TLR (Toll-like receptor)-4 signaling and macrophage activation, which were abrogated by TLR4 inhibitors. Furthermore, deletion of the Tyrobp-associated receptor Trem2 significantly aggravated mouse AD development, whereas Trem2 agonist treatment conferred protection against AD.
Conclusions: Our findings suggest a novel role for the Trem2/Tyrobp axis in AD development in mice. Enhancement of Trem2/Tyrobp signaling may represent a promising strategy for the prevention and treatment of AD. Future studies to clarify the role of Trem2/Tyrobp in human AD are warranted.
期刊介绍:
The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA).
The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.