Knockdown of ANO1 decreases TGF-β- and IL-6-induced adhesion and migration of cardiac fibroblasts by inhibiting the expression of integrin and focal adhesion kinase
Xiangqin Tian , Yajing Zhang , Hezhe Gong , Mengru Bai , Changye Sun , Yangyang Jia , Changen Duan , Xianwei Wang
{"title":"Knockdown of ANO1 decreases TGF-β- and IL-6-induced adhesion and migration of cardiac fibroblasts by inhibiting the expression of integrin and focal adhesion kinase","authors":"Xiangqin Tian , Yajing Zhang , Hezhe Gong , Mengru Bai , Changye Sun , Yangyang Jia , Changen Duan , Xianwei Wang","doi":"10.1016/j.yexcr.2024.114321","DOIUrl":null,"url":null,"abstract":"<div><div>Ischemic cardiac injury triggers a significant inflammatory response, activating and mobilizing cardiac fibroblasts (CFs), which ultimately contributes to myocardial fibrosis. In this study, we investigated the role of ANO1, a calcium-activated chloride channel (CaCC) protein, in regulating CFs migration and adhesion under inflammatory conditions. Our results demonstrated that ANO1 knockdown significantly attenuated TGF-β- and IL-6-induced adhesion and migration of CFs. This inhibitory effect was mediated through the downregulation of integrin expression and reduced activation of focal adhesion kinase (FAK), key components in cellular adhesion and motility pathways. This study provides new insights into the mechanisms underlying CFs migration and adhesion, highlighting the potential of ANO1 as a therapeutic target for mitigating adverse fibrotic remodeling following myocardial infarction.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114321"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724004129","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic cardiac injury triggers a significant inflammatory response, activating and mobilizing cardiac fibroblasts (CFs), which ultimately contributes to myocardial fibrosis. In this study, we investigated the role of ANO1, a calcium-activated chloride channel (CaCC) protein, in regulating CFs migration and adhesion under inflammatory conditions. Our results demonstrated that ANO1 knockdown significantly attenuated TGF-β- and IL-6-induced adhesion and migration of CFs. This inhibitory effect was mediated through the downregulation of integrin expression and reduced activation of focal adhesion kinase (FAK), key components in cellular adhesion and motility pathways. This study provides new insights into the mechanisms underlying CFs migration and adhesion, highlighting the potential of ANO1 as a therapeutic target for mitigating adverse fibrotic remodeling following myocardial infarction.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.