The Effect of Hydrostatic Pressure on Structure, Crystal-Field Strength, and Emission Properties of Neat and Ni2+-Activated KMgF3

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Zafari Umar, Oleg Khyzhun, Mekhrdod S. Kurboniyon, Tomoyuki Yamamoto, Mikhail G. Brik, Mega Novita, Justyna Barzowska, Michal Piasecki
{"title":"The Effect of Hydrostatic Pressure on Structure, Crystal-Field Strength, and Emission Properties of Neat and Ni2+-Activated KMgF3","authors":"Zafari Umar, Oleg Khyzhun, Mekhrdod S. Kurboniyon, Tomoyuki Yamamoto, Mikhail G. Brik, Mega Novita, Justyna Barzowska, Michal Piasecki","doi":"10.1002/adts.202400734","DOIUrl":null,"url":null,"abstract":"To understand excellent emission and sensitivity for hydrostatic pressure luminescent ions host material, the first principles calculations carried out within density functional theory (DFT) framework are performed to clarify the electronic structure of neat and doped with Ni<sup>2+</sup> ions KMgF<sub>3</sub> single crystals. The results of band structure calculations show that F2<i>p</i> states are the principal contributors to the KMgF<sub>3</sub> valence band, mainly in its upper and central parts, while in the energy band gap of the KMgF<sub>3</sub>:Ni<sup>2+</sup> phosphor, new electronic states associated with the Ni<sup>2+</sup> 3<i>d</i>-orbitals are formed. Furthermore, the zero phonon line (ZPL) spin-forbidden transition emission energies, (<sup>3</sup>A<sub>2</sub>⇄<sup>1</sup>E) <sub>ZPL</sub>, (<sup>3</sup>A<sub>2</sub>⇄<sup>3</sup>T<sub>2</sub>) <sub>ZPL</sub>, strength of the octahedral crystal field, 10<i>Dq</i> (<sup>3</sup>A<sub>2</sub>→<sup>3</sup>T<sub>2</sub>)<sub>ZPL</sub>, are calculated for the KMgF<sub>3</sub>:Ni<sup>2+</sup> phosphor. Any changes of the <i>E<sub>m</sub></i>(<sup>3</sup>A<sub>2</sub>⇄<sup>1</sup>E)<sub>ZPL</sub> transition energy of the KMgF<sub>3</sub>:Ni<sup>2+</sup> phosphor with pressure increasing from 0 to 20 GPa are not detected, while the crystal-field strength increases linearly with increasing pressure. Present results bring a foresight tool for predicting physicochemical properties of undoped and doped wide-gap fluorides; KMgF<sub>3</sub>:Ni<sup>2+</sup>, without any toxic/harmful or expensive rare-earth can be effectively used as an optical manometer in 0–20 GPa, which covers the almost whole pressure range available at present in Diamond anvil cell experiments.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400734","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To understand excellent emission and sensitivity for hydrostatic pressure luminescent ions host material, the first principles calculations carried out within density functional theory (DFT) framework are performed to clarify the electronic structure of neat and doped with Ni2+ ions KMgF3 single crystals. The results of band structure calculations show that F2p states are the principal contributors to the KMgF3 valence band, mainly in its upper and central parts, while in the energy band gap of the KMgF3:Ni2+ phosphor, new electronic states associated with the Ni2+ 3d-orbitals are formed. Furthermore, the zero phonon line (ZPL) spin-forbidden transition emission energies, (3A21E) ZPL, (3A23T2) ZPL, strength of the octahedral crystal field, 10Dq (3A23T2)ZPL, are calculated for the KMgF3:Ni2+ phosphor. Any changes of the Em(3A21E)ZPL transition energy of the KMgF3:Ni2+ phosphor with pressure increasing from 0 to 20 GPa are not detected, while the crystal-field strength increases linearly with increasing pressure. Present results bring a foresight tool for predicting physicochemical properties of undoped and doped wide-gap fluorides; KMgF3:Ni2+, without any toxic/harmful or expensive rare-earth can be effectively used as an optical manometer in 0–20 GPa, which covers the almost whole pressure range available at present in Diamond anvil cell experiments.

Abstract Image

静水压力对纯净和 Ni2+ 活化 KMgF3 的结构、晶场强度和发射特性的影响
为了解静压发光离子宿主材料的优异发射和灵敏度,我们在密度泛函理论(DFT)框架内进行了第一性原理计算,以阐明纯 KMgF3 单晶和掺杂 Ni2+ 离子 KMgF3 单晶的电子结构。能带结构计算的结果表明,F2p 态是 KMgF3 价带的主要贡献态,主要分布在价带的上部和中部,而在 KMgF3:Ni2+ 荧光粉的能带隙中,形成了与 Ni2+ 3d-orbitals 相关的新电子态。此外,还计算了 KMgF3:Ni2+ 荧光粉的零声子线(ZPL)自旋禁变发射能量 (3A2⇄1E) ZPL、(3A2⇄3T2) ZPL、八面体晶场强度 10Dq (3A2→3T2)ZPL 等。KMgF3:Ni2+荧光粉的 Em(3A2⇄1E)ZPL 转变能在压力从 0 GPa 增加到 20 GPa 的过程中没有发生任何变化,而晶场强度则随着压力的增加而线性增加。目前的研究结果为预测未掺杂和掺杂宽隙氟化物的物理化学性质提供了一种前瞻性工具;KMgF3:Ni2+ 不含任何有毒/有害或昂贵的稀土,可以有效地用作 0-20 GPa 的光学压力计,这几乎涵盖了目前金刚石砧电池实验的整个压力范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信