Nonsingular Indirect Boundary Element Method and Multistrategy Particle Swarm Optimization Algorithm Applied to 3D Subsurface Cavity Inversion

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Zhongxian Liu, Shuo Zhu, Alexander H. D. Cheng, Zhenen Huang
{"title":"Nonsingular Indirect Boundary Element Method and Multistrategy Particle Swarm Optimization Algorithm Applied to 3D Subsurface Cavity Inversion","authors":"Zhongxian Liu, Shuo Zhu, Alexander H. D. Cheng, Zhenen Huang","doi":"10.1002/nag.3879","DOIUrl":null,"url":null,"abstract":"The inversion of subsurface geological structures is a crucial approach for gaining insights into the internal composition of the earth. In this paper, we propose a novel inversion method combining the nonsingular indirect boundary element method (IBEM) with the multistrategy particle swarm optimization (MSPSO) algorithm, tailored for accurately inverting 3D subsurface cavities. Leveraging the semi‐analytical nature of IBEM offers advantages such as dimensionality reduction, automatic fulfillment of radiation conditions at infinity, and high computational accuracy. Furthermore, to augment global optimization and local search capabilities, an MSPSO algorithm is introduced. Employing multiple optimization strategies enhances particle diversity, accelerates algorithm convergence, and mitigates the risk of local optima. Through the consideration of subsurface cavities with varying parameters, this method quickly identifies the approximate location of the cavity within a wide search range. The final results demonstrate that the proposed method can simultaneously and accurately invert the 3D spatial position, size, and orientation of the cavity.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"44 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3879","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The inversion of subsurface geological structures is a crucial approach for gaining insights into the internal composition of the earth. In this paper, we propose a novel inversion method combining the nonsingular indirect boundary element method (IBEM) with the multistrategy particle swarm optimization (MSPSO) algorithm, tailored for accurately inverting 3D subsurface cavities. Leveraging the semi‐analytical nature of IBEM offers advantages such as dimensionality reduction, automatic fulfillment of radiation conditions at infinity, and high computational accuracy. Furthermore, to augment global optimization and local search capabilities, an MSPSO algorithm is introduced. Employing multiple optimization strategies enhances particle diversity, accelerates algorithm convergence, and mitigates the risk of local optima. Through the consideration of subsurface cavities with varying parameters, this method quickly identifies the approximate location of the cavity within a wide search range. The final results demonstrate that the proposed method can simultaneously and accurately invert the 3D spatial position, size, and orientation of the cavity.
非星形间接边界元法和多策略粒子群优化算法应用于三维地下空腔反演
地下地质结构反演是深入了解地球内部组成的重要方法。在本文中,我们提出了一种新颖的反演方法,将非成组间接边界元法(IBEM)与多策略粒子群优化算法(MSPSO)相结合,专门用于精确反演三维地下空洞。利用 IBEM 的半解析性质,可实现降维、自动满足无穷远辐射条件和高计算精度等优势。此外,为了增强全局优化和局部搜索能力,还引入了 MSPSO 算法。采用多种优化策略可增强粒子多样性,加速算法收敛,并降低局部最优的风险。通过考虑具有不同参数的地下空洞,该方法可在较大的搜索范围内快速确定空洞的大致位置。最终结果表明,所提出的方法可以同时准确地反演空洞的三维空间位置、大小和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信