Analytical Model for Heat Transfer Around Energy Piles in Layered Soil With Interfacial Thermal Resistance by Integral Transform Method

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Xiangyun Zhou, Qingkai Zhang, De'an Sun, You Gao, Minjie Wen, Yunzhi Tan
{"title":"Analytical Model for Heat Transfer Around Energy Piles in Layered Soil With Interfacial Thermal Resistance by Integral Transform Method","authors":"Xiangyun Zhou, Qingkai Zhang, De'an Sun, You Gao, Minjie Wen, Yunzhi Tan","doi":"10.1002/nag.3883","DOIUrl":null,"url":null,"abstract":"Energy piles are commonly deployed in vertically layered geological conditions due to the geological structure and pile foundation backfill. The imperfect contact between adjacent soil layers results in resistance to heat transfer at the interface, known as the interfacial thermal resistance effect. In this paper, the energy pile was simplified as a finite‐length solid cylindrical heat source, and an analytical model was established for layered heat transfer of energy piles considering the interfacial thermal resistance effect. The Laplace‐domain solutions to the temperatures in the layered ground were derived by using the finite Hankel and Laplace transforms. The Crump method was subsequently employed to numerically invert Laplace‐domain solutions to the time‐domain solutions. The proposed model was validated by comparing with an analytical solution of a homogeneous model and COMSOL numerical solution. These solutions were used to analyze the temperature response around energy piles considering interfacial thermal resistance. Finally, a parametric study was performed to explore the effects of interfacial thermal resistance and other thermal properties of the soil layer on the layered heat transfer of energy piles.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"19 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3883","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Energy piles are commonly deployed in vertically layered geological conditions due to the geological structure and pile foundation backfill. The imperfect contact between adjacent soil layers results in resistance to heat transfer at the interface, known as the interfacial thermal resistance effect. In this paper, the energy pile was simplified as a finite‐length solid cylindrical heat source, and an analytical model was established for layered heat transfer of energy piles considering the interfacial thermal resistance effect. The Laplace‐domain solutions to the temperatures in the layered ground were derived by using the finite Hankel and Laplace transforms. The Crump method was subsequently employed to numerically invert Laplace‐domain solutions to the time‐domain solutions. The proposed model was validated by comparing with an analytical solution of a homogeneous model and COMSOL numerical solution. These solutions were used to analyze the temperature response around energy piles considering interfacial thermal resistance. Finally, a parametric study was performed to explore the effects of interfacial thermal resistance and other thermal properties of the soil layer on the layered heat transfer of energy piles.
用积分变换法分析具有界面热阻的层状土壤中能量桩周围的传热模型
由于地质结构和桩基回填的原因,能量桩通常部署在垂直分层的地质条件下。相邻土层之间的不完全接触会导致界面处的传热阻力,即界面热阻效应。本文将能源桩简化为有限长度的实心圆柱热源,并建立了考虑界面热阻效应的能源桩分层传热分析模型。通过有限汉克尔变换和拉普拉斯变换,得出了分层地面温度的拉普拉斯域解。随后采用 Crump 方法将拉普拉斯域解数值反演为时域解。通过与均质模型的分析解法和 COMSOL 数值解法进行比较,对所提出的模型进行了验证。考虑到界面热阻,这些解法被用于分析能量桩周围的温度响应。最后,进行了参数研究,以探讨界面热阻和土层的其他热特性对能源桩分层传热的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信