Transition between quadrupole and staggered dipole interlayer excitons inWSe2/MoSe2/WSe2heterotrilayers

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Yongzhi Xie, Fengyu Chen, Yuchen Gao, Yunkun Wang, Jun Mao, Qinyun Liu, Saisai Chu, Hong Yang, Yu Ye, Qihuang Gong, Ji Feng, Yunan Gao
{"title":"Transition between quadrupole and staggered dipole interlayer excitons inWSe2/MoSe2/WSe2heterotrilayers","authors":"Yongzhi Xie, Fengyu Chen, Yuchen Gao, Yunkun Wang, Jun Mao, Qinyun Liu, Saisai Chu, Hong Yang, Yu Ye, Qihuang Gong, Ji Feng, Yunan Gao","doi":"10.1103/physrevb.110.l201402","DOIUrl":null,"url":null,"abstract":"Recently, a new exciton species of quadrupole exciton (QX) has been discovered in two-dimensional (2D) transition-metal dichalcogenide (TMD) heterotrilayers, which has attracted increasing attention for its fascinating properties. Theoretically, it is predicted that QXs will be squeezed into energetically favored staggered dipole excitons (Stg-DXs) as the exciton density increases. Here, we report photoluminescence spectroscopy studies of this exciton transition between QXs and Stg-DXs in <mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(11 (2 0 1) 3 (12 (6 4 5) 7 (10 8 9)))\"><mjx-mrow data-semantic-children=\"2,12\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 12\" data-semantic-role=\"division\" data-semantic-speech=\"upper W upper S e 2 divided by upper M o upper S e 2 divided by upper W upper S e 2\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">W</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c style=\"padding-top: 0.669em;\">e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"11\" data-semantic-role=\"division\" data-semantic-type=\"operator\" space=\"2\"><mjx-c>/</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"6,10\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"6 7 10\" data-semantic-parent=\"11\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"2\"><mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"12\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">M</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">o</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c style=\"padding-top: 0.669em;\">e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"12\" data-semantic-role=\"division\" data-semantic-type=\"operator\" space=\"2\"><mjx-c>/</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"8,9\" data-semantic- data-semantic-owns=\"8 9\" data-semantic-parent=\"12\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">W</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c style=\"padding-top: 0.669em;\">e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-math></mjx-container> heterotrilayers. As the exciton density increases, we observe that the Stark effect curve gradually deforms from a hyperbola to a piecewise linear function, providing the first sign of the transition. At the same time, the initially dark QXs become radiative, reaffirming the transition from QXs to Stg-DXs, as the optical selection rules are lifted by breaking the mirror symmetry. Remarkably, we find that this transition can be tuned by introducing doping to change the screening and thus the interactions between excitons. Our results provide observations and understanding of QXs and Stg-DXs in TMD heterotrilayers.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.l201402","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, a new exciton species of quadrupole exciton (QX) has been discovered in two-dimensional (2D) transition-metal dichalcogenide (TMD) heterotrilayers, which has attracted increasing attention for its fascinating properties. Theoretically, it is predicted that QXs will be squeezed into energetically favored staggered dipole excitons (Stg-DXs) as the exciton density increases. Here, we report photoluminescence spectroscopy studies of this exciton transition between QXs and Stg-DXs in WSe2/MoSe2/WSe2 heterotrilayers. As the exciton density increases, we observe that the Stark effect curve gradually deforms from a hyperbola to a piecewise linear function, providing the first sign of the transition. At the same time, the initially dark QXs become radiative, reaffirming the transition from QXs to Stg-DXs, as the optical selection rules are lifted by breaking the mirror symmetry. Remarkably, we find that this transition can be tuned by introducing doping to change the screening and thus the interactions between excitons. Our results provide observations and understanding of QXs and Stg-DXs in TMD heterotrilayers.
WSe2/MoSe2/WSe2三元层中四极和交错偶极层间激子之间的转变
最近,在二维(2D)过渡金属二钙化物(TMD)异三元层中发现了一种新的激子物种--四极激子(QX),其迷人的特性引起了越来越多的关注。根据理论预测,随着激子密度的增加,QXs 会被挤压成能量偏好的交错偶极激子(Stg-DXs)。在此,我们报告了对 WSe2/MoSe2/WSe2 异三元层中 QX 与 Stg-DX 之间激子转变的光致发光光谱研究。随着激子密度的增加,我们观察到斯塔克效应曲线逐渐从双曲线变形为片断线性函数,从而提供了转变的第一个迹象。同时,由于打破了镜像对称性,光学选择规则被解除,最初的暗QX变成了辐射QX,再次证实了从QX到Stg-DX的转变。值得注意的是,我们发现这种转变可以通过引入掺杂来改变屏蔽,从而改变激子之间的相互作用。我们的研究结果提供了对 TMD 异三元层中 QX 和 Stg-DX 的观察和理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信