Fermi liquid near a𝑞=0charge quantum critical point

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
R. David Mayrhofer, Andrey V. Chubukov, Peter Wölfle
{"title":"Fermi liquid near a𝑞=0charge quantum critical point","authors":"R. David Mayrhofer, Andrey V. Chubukov, Peter Wölfle","doi":"10.1103/physrevb.110.205112","DOIUrl":null,"url":null,"abstract":"We analyze the quasiparticle interaction function (the fully dressed and antisymmetrized interaction between fermions) for a two-dimensional Fermi liquid at zero temperature close to a q=0 charge quantum critical point (QCP) in the <mjx-container ctxtmenu_counter=\"19\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"subtraction\" data-semantic-speech=\"s minus w a v e\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑠</mjx-c></mjx-mi><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">w</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">a</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">v</mjx-c><mjx-c style=\"padding-top: 0.485em;\">e</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> channel (the one leading to phase separation). By the Ward identities, this vertex function must be related to quasiparticle residue <mjx-container ctxtmenu_counter=\"20\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper Z\" data-semantic-type=\"identifier\"><mjx-c>𝑍</mjx-c></mjx-mi></mjx-math></mjx-container>, which can be obtained independently from the fermionic self-energy. We show that to satisfy these Ward identities, one needs to go beyond the standard diagrammatic formulation of Fermi-liquid theory and include a series of additional contributions to the vertex function. These contributions are not present in a conventional Fermi liquid, but do emerge near a QCP, where the effective 4-fermion interaction is mediated by a soft dynamical boson. We demonstrate explicitly that including these terms restores the Ward identity. Our analysis is built on previous studies of the vertex function near an antiferromag netic QCP [<span>Phys. Rev. B</span> <b>89</b>, 045108 (2014)] and a <mjx-container ctxtmenu_counter=\"21\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container>-wave charge-nematic QCP [<span>Phys. Rev. B</span> <b>81</b>, 045110 (2010)]. We show th at for <mjx-container ctxtmenu_counter=\"22\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"subtraction\" data-semantic-speech=\"s minus w a v e\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑠</mjx-c></mjx-mi><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">w</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">a</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">v</mjx-c><mjx-c style=\"padding-top: 0.485em;\">e</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> charge QCP the analysis is more straightforward and allows one to obtain the full quasiparticle interaction function (the Landau function) near a QCP. We show that all partial components of this function (Landau parameters) diverge near a QCP, in the same way as the effective mass <mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"m Superscript asterisk\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑚</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" size=\"s\"><mjx-c>*</mjx-c></mjx-mo></mjx-script></mjx-msup></mjx-math></mjx-container>, except for the <mjx-container ctxtmenu_counter=\"24\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"s\" data-semantic-type=\"identifier\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-math></mjx-container>-wave charge component, which approaches <mjx-container ctxtmenu_counter=\"25\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1\" data-semantic-content=\"0\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"negative\" data-semantic-speech=\"negative 1\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"2\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>. Consequently, the susceptibilities in all channels, except for the critical one, remain finite at a QCP, as they should.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"1 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205112","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the quasiparticle interaction function (the fully dressed and antisymmetrized interaction between fermions) for a two-dimensional Fermi liquid at zero temperature close to a q=0 charge quantum critical point (QCP) in the 𝑠wave channel (the one leading to phase separation). By the Ward identities, this vertex function must be related to quasiparticle residue 𝑍, which can be obtained independently from the fermionic self-energy. We show that to satisfy these Ward identities, one needs to go beyond the standard diagrammatic formulation of Fermi-liquid theory and include a series of additional contributions to the vertex function. These contributions are not present in a conventional Fermi liquid, but do emerge near a QCP, where the effective 4-fermion interaction is mediated by a soft dynamical boson. We demonstrate explicitly that including these terms restores the Ward identity. Our analysis is built on previous studies of the vertex function near an antiferromag netic QCP [Phys. Rev. B 89, 045108 (2014)] and a 𝑑-wave charge-nematic QCP [Phys. Rev. B 81, 045110 (2010)]. We show th at for 𝑠wave charge QCP the analysis is more straightforward and allows one to obtain the full quasiparticle interaction function (the Landau function) near a QCP. We show that all partial components of this function (Landau parameters) diverge near a QCP, in the same way as the effective mass 𝑚*, except for the 𝑠-wave charge component, which approaches 1. Consequently, the susceptibilities in all channels, except for the critical one, remain finite at a QCP, as they should.
靠近△=0 电荷量子临界点的费米液体
我们分析了二维费米液体的准粒子相互作用函数(费米子之间的全包被和反对称相互作用),该函数在零温度下接近𝑠-波通道中q=0电荷量子临界点(QCP)(导致相分离的通道)。根据沃德(Ward)等式,这个顶点函数必须与类粒子残差𝑍相关,而后者可以从费米自能中独立获得。我们的研究表明,要满足这些沃德特性,我们需要超越费米液体理论的标准图解形式,在顶点函数中加入一系列额外的贡献。这些贡献在传统费米液体中并不存在,但在 QCP 附近却出现了,在 QCP 附近,有效的 4 费米子相互作用是由软动力学玻色子介导的。我们明确证明,加入这些项可以恢复沃德特性。我们的分析建立在先前对反铁磁性 QCP [Phys. Rev. B 89, 045108 (2014)]和𝑑-wave charge-nematic QCP [Phys. Rev. B 81, 045110 (2010)]附近顶点函数的研究基础之上。我们的研究表明,对于𝑠-波电荷QCP,分析更为直接,可以得到QCP附近的全部类粒子相互作用函数(朗道函数)。我们的研究表明,除了𝑠-波电荷分量接近-1之外,该函数的所有部分分量(朗道参数)都会以与有效质量𝑚*相同的方式在QCP附近发散。因此,除了临界通道之外,所有通道的易感性在 QCP 处都保持有限,这是理所应当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信