{"title":"Superlattice-induced electron percolation within a single Landau level","authors":"Nilanjan Roy, Bo Peng, Bo Yang","doi":"10.1103/physrevb.110.195116","DOIUrl":null,"url":null,"abstract":"We investigate the quantum Hall effect in a single Landau level in the presence of a square superlattice of <mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"delta\" data-semantic-type=\"identifier\"><mjx-c>𝛿</mjx-c></mjx-mi></mjx-math></mjx-container>-function potentials. The interplay between the superlattice spacing <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"a Subscript s\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> and the magnetic length <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"script l Subscript upper B\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> in a clean system leads to three interesting characteristic regimes corresponding to <mjx-container ctxtmenu_counter=\"37\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"7,8,19\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 19\" data-semantic-role=\"sequence\" data-semantic-speech=\"a Subscript s Baseline less than script l Subscript upper B Baseline comma a Subscript s Baseline much greater than script l Subscript upper B Baseline\" data-semantic-structure=\"(20 (7 (2 0 1) 3 (6 4 5)) 8 (19 9 (17 (12 10 11) 13 (16 14 15))))\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-parent=\"20\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,<\" data-semantic-parent=\"7\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c><</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"20\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"9,17\" data-semantic-collapsed=\"(19 (c 18) 9 17)\" data-semantic- data-semantic-owns=\"9 17\" data-semantic-parent=\"20\" data-semantic-role=\"text\" data-semantic-type=\"punctuated\" space=\"2\"><mjx-mo data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"space\" data-semantic-type=\"text\"><mjx-c> </mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"12,16\" data-semantic-content=\"13\" data-semantic- data-semantic-owns=\"12 13 16\" data-semantic-parent=\"19\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"10,11\" data-semantic- data-semantic-owns=\"10 11\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,≫\" data-semantic-parent=\"17\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≫</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"14,15\" data-semantic- data-semantic-owns=\"14 15\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, and the intermediate one where <mjx-container ctxtmenu_counter=\"38\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\"><mjx-mrow data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"equality\" data-semantic-speech=\"a Subscript s Baseline tilde script l Subscript upper B\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"7\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>∼</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>. In the intermediate regime, the continuous magnetic translation symmetry breaks down to discrete lattice symmetry. In contrast, we show that, in the other two regimes, the same is hardly broken in the topological band despite the presence of the superlattice. In the presence of weak disorder (white-noise) one typically expects a tiny fraction of extended states due to topological protection of the Landau level. Interestingly, we obtain a large fraction of extended states throughout the intermediate regime which maximizes at the special point <mjx-container ctxtmenu_counter=\"39\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(14 (2 0 1) 3 (13 (8 (7 4 6 5)) 12 (11 9 10)))\"><mjx-mrow data-semantic-children=\"2,13\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 13\" data-semantic-role=\"equality\" data-semantic-speech=\"a Subscript s Baseline equals StartRoot 2 pi EndRoot script l Subscript upper B\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"14\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"8,11\" data-semantic-content=\"12\" data-semantic- data-semantic-owns=\"8 12 11\" data-semantic-parent=\"14\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-msqrt data-semantic-children=\"7\" data-semantic- data-semantic-owns=\"7\" data-semantic-parent=\"13\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c>√</mjx-c></mjx-mo></mjx-surd><mjx-box style=\"padding-top: 0.275em; border-top-width: 0.085em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"4,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"4 6 5\" data-semantic-parent=\"8\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜋</mjx-c></mjx-mi></mjx-mrow></mjx-box></mjx-sqrt></mjx-msqrt><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"13\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"9,10\" data-semantic- data-semantic-owns=\"9 10\" data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-math></mjx-container>. We argue the superlattice induced percolation phenomenon requires both the breaking of the time reversal symmetry and the continuous magnetic translational symmetry. It could have a direct implication on the integer plateau transitions in both continuous quantum Hall systems and the lattice based anomalous quantum Hall effect.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195116","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the quantum Hall effect in a single Landau level in the presence of a square superlattice of 𝛿-function potentials. The interplay between the superlattice spacing 𝑎𝑠 and the magnetic length ℓ𝐵 in a clean system leads to three interesting characteristic regimes corresponding to 𝑎𝑠<ℓ𝐵,𝑎𝑠≫ℓ𝐵, and the intermediate one where 𝑎𝑠∼ℓ𝐵. In the intermediate regime, the continuous magnetic translation symmetry breaks down to discrete lattice symmetry. In contrast, we show that, in the other two regimes, the same is hardly broken in the topological band despite the presence of the superlattice. In the presence of weak disorder (white-noise) one typically expects a tiny fraction of extended states due to topological protection of the Landau level. Interestingly, we obtain a large fraction of extended states throughout the intermediate regime which maximizes at the special point 𝑎𝑠=√2𝜋ℓ𝐵. We argue the superlattice induced percolation phenomenon requires both the breaking of the time reversal symmetry and the continuous magnetic translational symmetry. It could have a direct implication on the integer plateau transitions in both continuous quantum Hall systems and the lattice based anomalous quantum Hall effect.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter