Bilayer stacking𝐴-type altermagnet: A general approach to generating two-dimensional altermagnetism

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Sike Zeng, Yu-Jun Zhao
{"title":"Bilayer stacking𝐴-type altermagnet: A general approach to generating two-dimensional altermagnetism","authors":"Sike Zeng, Yu-Jun Zhao","doi":"10.1103/physrevb.110.174410","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a concept of bilayer stacking <mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet (BSAA), in which two identical ferromagnetic monolayers are stacked with antiferromagnetic coupling to form a two-dimensional (2D) <mjx-container ctxtmenu_counter=\"33\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet. By solving the stacking model, we derive all BSAAs for all layer groups and draw three key conclusions: (i) Only 17 layer groups can realize intrinsic <mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnetism. All 2D <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnets must belong to these 17 layer groups, which will be helpful to search for 2D <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet. (ii) It is impossible to connect the two sublattices of BSAA using <mjx-container ctxtmenu_counter=\"37\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 3 2))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript 3 z\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.005em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"1 3 2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"4\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑧</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> or <mjx-container ctxtmenu_counter=\"38\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 3 2))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript 6 z\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.005em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"1 3 2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>6</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"4\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑧</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>, a constraint that is also applicable to all 2D altermagnets. (iii) <mjx-container ctxtmenu_counter=\"39\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 3 2))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper C Subscript 2 alpha\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐶</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.018em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"1 3 2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"4\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝛼</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> is a general stacking operation to generate BSAA for an arbitrary monolayer. Our theory not only can explain the previously reported twisted-bilayer altermagnets, but also can provide more possibilities to generate <mjx-container ctxtmenu_counter=\"40\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnets. Our research has significantly broadened the range of candidate materials for 2D altermagnets. Based on conclusion (i), the bilayer <mjx-container ctxtmenu_counter=\"41\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper Z r upper C l 6\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">Z</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">r</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c style=\"padding-top: 0.706em;\">l</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>6</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> is predicted to exhibit intrinsic <mjx-container ctxtmenu_counter=\"42\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnetism. Additionally, we use twisted-bilayer <mjx-container ctxtmenu_counter=\"43\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper C l 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c style=\"padding-top: 0.706em;\">l</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and CrOCl as supplementary examples of BSAA. Furthermore, utilizing symmetry analysis and first-principles calculation, we scrutinize their spin-momentum locking characteristic to substantiate their altermagnetic properties.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"29 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.174410","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a concept of bilayer stacking 𝐴-type altermagnet (BSAA), in which two identical ferromagnetic monolayers are stacked with antiferromagnetic coupling to form a two-dimensional (2D) 𝐴-type altermagnet. By solving the stacking model, we derive all BSAAs for all layer groups and draw three key conclusions: (i) Only 17 layer groups can realize intrinsic 𝐴-type altermagnetism. All 2D 𝐴-type altermagnets must belong to these 17 layer groups, which will be helpful to search for 2D 𝐴-type altermagnet. (ii) It is impossible to connect the two sublattices of BSAA using 𝑆3𝑧 or 𝑆6𝑧, a constraint that is also applicable to all 2D altermagnets. (iii) 𝐶2𝛼 is a general stacking operation to generate BSAA for an arbitrary monolayer. Our theory not only can explain the previously reported twisted-bilayer altermagnets, but also can provide more possibilities to generate 𝐴-type altermagnets. Our research has significantly broadened the range of candidate materials for 2D altermagnets. Based on conclusion (i), the bilayer NiZrCl6 is predicted to exhibit intrinsic 𝐴-type altermagnetism. Additionally, we use twisted-bilayer NiCl2 and CrOCl as supplementary examples of BSAA. Furthermore, utilizing symmetry analysis and first-principles calculation, we scrutinize their spin-momentum locking characteristic to substantiate their altermagnetic properties.
双层堆积𝐴型变磁体:产生二维变磁性的一般方法
本文提出了双层堆叠𝐴型变磁体(BSAA)的概念,即两个相同的铁磁单层通过反铁磁耦合堆叠形成二维(2D)𝐴型变磁体。通过求解堆叠模型,我们推导出所有层组的所有 BSAAs,并得出三个重要结论:(i) 只有 17 个层组能实现本征𝐴型反磁性。所有二维𝐴型变磁体都必须属于这 17 个层组,这将有助于寻找二维𝐴型变磁体。(ii) 用𝑆3𝑧或𝑆6𝑧连接 BSAA 的两个子晶格是不可能的,这一限制也适用于所有二维变磁体。(iii) 𝐶2𝛼是产生任意单层 BSAA 的一般堆叠操作。我们的理论不仅可以解释之前报道过的扭曲双层改变磁体,还能为𝐴型改变磁体的产生提供更多可能性。我们的研究大大拓宽了二维变磁体候选材料的范围。基于结论 (i),我们预测双层 NiZrCl6 将表现出本征𝐴型变磁性。此外,我们还使用扭曲双层 NiCl2 和 CrOCl 作为 BSAA 的补充示例。此外,我们还利用对称性分析和第一性原理计算,仔细研究了它们的自旋动量锁定特性,以证实它们的变磁性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信