{"title":"Bilayer stacking𝐴-type altermagnet: A general approach to generating two-dimensional altermagnetism","authors":"Sike Zeng, Yu-Jun Zhao","doi":"10.1103/physrevb.110.174410","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a concept of bilayer stacking <mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet (BSAA), in which two identical ferromagnetic monolayers are stacked with antiferromagnetic coupling to form a two-dimensional (2D) <mjx-container ctxtmenu_counter=\"33\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet. By solving the stacking model, we derive all BSAAs for all layer groups and draw three key conclusions: (i) Only 17 layer groups can realize intrinsic <mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnetism. All 2D <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnets must belong to these 17 layer groups, which will be helpful to search for 2D <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet. (ii) It is impossible to connect the two sublattices of BSAA using <mjx-container ctxtmenu_counter=\"37\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 3 2))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript 3 z\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.005em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"1 3 2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"4\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑧</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> or <mjx-container ctxtmenu_counter=\"38\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 3 2))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript 6 z\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.005em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"1 3 2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>6</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"4\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑧</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>, a constraint that is also applicable to all 2D altermagnets. (iii) <mjx-container ctxtmenu_counter=\"39\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 3 2))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper C Subscript 2 alpha\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐶</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.018em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"1 3 2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"4\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝛼</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> is a general stacking operation to generate BSAA for an arbitrary monolayer. Our theory not only can explain the previously reported twisted-bilayer altermagnets, but also can provide more possibilities to generate <mjx-container ctxtmenu_counter=\"40\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnets. Our research has significantly broadened the range of candidate materials for 2D altermagnets. Based on conclusion (i), the bilayer <mjx-container ctxtmenu_counter=\"41\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper Z r upper C l 6\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">Z</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">r</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c style=\"padding-top: 0.706em;\">l</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>6</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> is predicted to exhibit intrinsic <mjx-container ctxtmenu_counter=\"42\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnetism. Additionally, we use twisted-bilayer <mjx-container ctxtmenu_counter=\"43\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper C l 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c style=\"padding-top: 0.706em;\">l</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and CrOCl as supplementary examples of BSAA. Furthermore, utilizing symmetry analysis and first-principles calculation, we scrutinize their spin-momentum locking characteristic to substantiate their altermagnetic properties.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"29 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.174410","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a concept of bilayer stacking 𝐴-type altermagnet (BSAA), in which two identical ferromagnetic monolayers are stacked with antiferromagnetic coupling to form a two-dimensional (2D) 𝐴-type altermagnet. By solving the stacking model, we derive all BSAAs for all layer groups and draw three key conclusions: (i) Only 17 layer groups can realize intrinsic 𝐴-type altermagnetism. All 2D 𝐴-type altermagnets must belong to these 17 layer groups, which will be helpful to search for 2D 𝐴-type altermagnet. (ii) It is impossible to connect the two sublattices of BSAA using 𝑆3𝑧 or 𝑆6𝑧, a constraint that is also applicable to all 2D altermagnets. (iii) 𝐶2𝛼 is a general stacking operation to generate BSAA for an arbitrary monolayer. Our theory not only can explain the previously reported twisted-bilayer altermagnets, but also can provide more possibilities to generate 𝐴-type altermagnets. Our research has significantly broadened the range of candidate materials for 2D altermagnets. Based on conclusion (i), the bilayer NiZrCl6 is predicted to exhibit intrinsic 𝐴-type altermagnetism. Additionally, we use twisted-bilayer NiCl2 and CrOCl as supplementary examples of BSAA. Furthermore, utilizing symmetry analysis and first-principles calculation, we scrutinize their spin-momentum locking characteristic to substantiate their altermagnetic properties.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter