Mattia Docci, Giuseppe Foti, Laurent Brochard, Giacomo Bellani
{"title":"Pressure support, patient effort and tidal volume: a conceptual model for a non linear interaction","authors":"Mattia Docci, Giuseppe Foti, Laurent Brochard, Giacomo Bellani","doi":"10.1186/s13054-024-05144-2","DOIUrl":null,"url":null,"abstract":"Pressure support ventilation (PSV) is a form of assisted ventilation which has become frequently used, with the aim of partially unloading the patient’s inspiratory muscles. Both under- and over-assistance should be avoided to target a lung- and diaphragm- protective ventilation. Herein, we propose a conceptual model, supported by actual data, to describe how patient and ventilator share the generation of tidal volume (Vt) in PSV and how respiratory system compliance (Crs) affects this interaction. We describe the presence of a patient-specific range of PSV levels, within which the inspiratory effort (Pmus) is modulated, keeping Vt relatively steady on a desired value (Vttarget). This range of assistance may be considered the “adequate PSV assistance” required by the patient, while higher and lower levels may result in over- and under-assistance respectively. As we also show, the determinants of over- and under- assistance borders depend on the combination of Crs and the inspiratory effort which the patient is able to sustain over a period of time. These concepts can be applied at the bedside to understand if the level of assistance is adequate to patient’s demand, focusing on the variation of relevant parameters (Vt, Pmus and pressure-muscle-index) as patient reaction to a change in the level of assistance.","PeriodicalId":10811,"journal":{"name":"Critical Care","volume":"17 1","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13054-024-05144-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Pressure support ventilation (PSV) is a form of assisted ventilation which has become frequently used, with the aim of partially unloading the patient’s inspiratory muscles. Both under- and over-assistance should be avoided to target a lung- and diaphragm- protective ventilation. Herein, we propose a conceptual model, supported by actual data, to describe how patient and ventilator share the generation of tidal volume (Vt) in PSV and how respiratory system compliance (Crs) affects this interaction. We describe the presence of a patient-specific range of PSV levels, within which the inspiratory effort (Pmus) is modulated, keeping Vt relatively steady on a desired value (Vttarget). This range of assistance may be considered the “adequate PSV assistance” required by the patient, while higher and lower levels may result in over- and under-assistance respectively. As we also show, the determinants of over- and under- assistance borders depend on the combination of Crs and the inspiratory effort which the patient is able to sustain over a period of time. These concepts can be applied at the bedside to understand if the level of assistance is adequate to patient’s demand, focusing on the variation of relevant parameters (Vt, Pmus and pressure-muscle-index) as patient reaction to a change in the level of assistance.
期刊介绍:
Critical Care is an esteemed international medical journal that undergoes a rigorous peer-review process to maintain its high quality standards. Its primary objective is to enhance the healthcare services offered to critically ill patients. To achieve this, the journal focuses on gathering, exchanging, disseminating, and endorsing evidence-based information that is highly relevant to intensivists. By doing so, Critical Care seeks to provide a thorough and inclusive examination of the intensive care field.