Xin Chen, Baohong Jiang, Yu Gu, Zhaoyang Yue, Ying Liu, Zhiwei Lei, Ge Yang, Minhua Deng, Xuelong Zhang, Zhen Luo, Yongkui Li, Qiwei Zhang, Xuepei Zhang, Jianguo Wu, Chunyu Huang, Pan Pan, Fangjian Zhou, Ning Wang
{"title":"SARS-CoV-2 nucleocapsid protein interaction with YBX1 displays oncolytic properties through PKM mRNA destabilization","authors":"Xin Chen, Baohong Jiang, Yu Gu, Zhaoyang Yue, Ying Liu, Zhiwei Lei, Ge Yang, Minhua Deng, Xuelong Zhang, Zhen Luo, Yongkui Li, Qiwei Zhang, Xuepei Zhang, Jianguo Wu, Chunyu Huang, Pan Pan, Fangjian Zhou, Ning Wang","doi":"10.1186/s12943-024-02153-1","DOIUrl":null,"url":null,"abstract":"SARS-CoV-2, a highly contagious coronavirus, is responsible for the global pandemic of COVID-19 in 2019. Currently, it remains uncertain whether SARS-CoV-2 possesses oncogenic or oncolytic potential in influencing tumor progression. Therefore, it is important to evaluate the clinical and functional role of SARS-CoV-2 on tumor progression. Here, we integrated bioinformatic analysis of COVID-19 RNA-seq data from the GEO database and performed functional studies to explore the regulatory role of SARS-CoV-2 in solid tumor progression, including lung, colon, kidney and liver cancer. Our results demonstrate that infection with SARS-CoV-2 is associated with a decreased expression of genes associated with cancer proliferation and metastasis in lung tissues from patients diagnosed with COVID-19. Several cancer proliferation or metastasis related genes were frequently downregulated in SARS-CoV-2 infected intestinal organoids and human colon carcinoma cells. In vivo and in vitro studies revealed that SARS-CoV-2 nucleocapsid (N) protein inhibits colon and kidney tumor growth and metastasis through the N-terminal (NTD) and the C-terminal domain (CTD). The molecular mechanism indicates that the N protein of SARS-CoV-2 interacts with YBX1, resulting in the recruitment of PKM mRNA into stress granules mediated by G3BP1. This process ultimately destabilizes PKM expression and suppresses glycolysis. Our study reveals a new function of SARS-CoV-2 nucleocapsid protein on tumor progression.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"8 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02153-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SARS-CoV-2, a highly contagious coronavirus, is responsible for the global pandemic of COVID-19 in 2019. Currently, it remains uncertain whether SARS-CoV-2 possesses oncogenic or oncolytic potential in influencing tumor progression. Therefore, it is important to evaluate the clinical and functional role of SARS-CoV-2 on tumor progression. Here, we integrated bioinformatic analysis of COVID-19 RNA-seq data from the GEO database and performed functional studies to explore the regulatory role of SARS-CoV-2 in solid tumor progression, including lung, colon, kidney and liver cancer. Our results demonstrate that infection with SARS-CoV-2 is associated with a decreased expression of genes associated with cancer proliferation and metastasis in lung tissues from patients diagnosed with COVID-19. Several cancer proliferation or metastasis related genes were frequently downregulated in SARS-CoV-2 infected intestinal organoids and human colon carcinoma cells. In vivo and in vitro studies revealed that SARS-CoV-2 nucleocapsid (N) protein inhibits colon and kidney tumor growth and metastasis through the N-terminal (NTD) and the C-terminal domain (CTD). The molecular mechanism indicates that the N protein of SARS-CoV-2 interacts with YBX1, resulting in the recruitment of PKM mRNA into stress granules mediated by G3BP1. This process ultimately destabilizes PKM expression and suppresses glycolysis. Our study reveals a new function of SARS-CoV-2 nucleocapsid protein on tumor progression.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.