CFT𝐷fromTQFT𝐷+1via Holographic Tensor Network, and Precision Discretization ofCFT2

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Lin Chen, Kaixin Ji, Haochen Zhang, Ce Shen, Ruoshui Wang, Xiangdong Zeng, Ling-Yan Hung
{"title":"CFT𝐷fromTQFT𝐷+1via Holographic Tensor Network, and Precision Discretization ofCFT2","authors":"Lin Chen, Kaixin Ji, Haochen Zhang, Ce Shen, Ruoshui Wang, Xiangdong Zeng, Ling-Yan Hung","doi":"10.1103/physrevx.14.041033","DOIUrl":null,"url":null,"abstract":"We show that the path integral of conformal field theories in <mjx-container ctxtmenu_counter=\"143\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper D\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter=\"144\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper C upper F upper T Subscript upper D\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>) can be constructed by solving for eigenstates of a renormalization group (RG) operator following from the Turaev-Viro formulation of a topological field theory (topological quantum field theory) (TQFT) in <mjx-container ctxtmenu_counter=\"145\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"addition\" data-semantic-speech=\"upper D plus 1\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"3\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"><mjx-c>1</mjx-c></mjx-mn></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter=\"146\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 2 3))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper T upper Q upper F upper T Subscript upper D plus 1\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">T</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">Q</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.208em;\"><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"5\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"4\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>), explicitly realizing the holographic sandwich relation between a symmetric theory and a TQFT. Generically, exact eigenstates corresponding to symmetric <mjx-container ctxtmenu_counter=\"147\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper T upper Q upper F upper T Subscript upper D\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">T</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">Q</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.208em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> follow from Frobenius algebra in <mjx-container ctxtmenu_counter=\"148\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 2 3))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper T upper Q upper F upper T Subscript upper D plus 1\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">T</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">Q</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.208em;\"><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"5\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"4\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>. For <mjx-container ctxtmenu_counter=\"149\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"equality\" data-semantic-speech=\"upper D equals 2\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container>, we construct eigenstates that produce 2D rational CFT path integrals exactly, which curiously connect a continuous-field theoretic path integral with the Turaev-Viro state sum. We also devise and illustrate numerical methods for <mjx-container ctxtmenu_counter=\"150\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"equality\" data-semantic-speech=\"upper D equals 2\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container>, 3 to search for <mjx-container ctxtmenu_counter=\"151\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper C upper F upper T Subscript upper D\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> as phase transition points between symmetric <mjx-container ctxtmenu_counter=\"152\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper T upper Q upper F upper T Subscript upper D\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">T</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">Q</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.208em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>. Finally, since the RG operator is in fact an exact analytic holographic tensor network, we compute “bulk-boundary” correlators and compare them with the AdS/CFT dictionary at <mjx-container ctxtmenu_counter=\"153\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"equality\" data-semantic-speech=\"upper D equals 2\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container>. Promisingly, they are numerically compatible given our accuracy, although further works will be needed to explore the precise connection to the AdS/CFT correspondence.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"1 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041033","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the path integral of conformal field theories in 𝐷 dimensions (CFT𝐷) can be constructed by solving for eigenstates of a renormalization group (RG) operator following from the Turaev-Viro formulation of a topological field theory (topological quantum field theory) (TQFT) in 𝐷+1 dimensions (TQFT𝐷+1), explicitly realizing the holographic sandwich relation between a symmetric theory and a TQFT. Generically, exact eigenstates corresponding to symmetric TQFT𝐷 follow from Frobenius algebra in TQFT𝐷+1. For 𝐷=2, we construct eigenstates that produce 2D rational CFT path integrals exactly, which curiously connect a continuous-field theoretic path integral with the Turaev-Viro state sum. We also devise and illustrate numerical methods for 𝐷=2, 3 to search for CFT𝐷 as phase transition points between symmetric TQFT𝐷. Finally, since the RG operator is in fact an exact analytic holographic tensor network, we compute “bulk-boundary” correlators and compare them with the AdS/CFT dictionary at 𝐷=2. Promisingly, they are numerically compatible given our accuracy, although further works will be needed to explore the precise connection to the AdS/CFT correspondence.

Abstract Image

通过全息张量网络的 CFT𝐷fromTQFT𝐷+1 和 CFT 的精确离散化2
我们证明,在𝐷维(CFT𝐷)上的共形场理论的路径积分可以通过求解重正化群(RG)算子的特征状态来构建,而重正化群算子的特征状态则来自于在𝐷+1维(TQFT𝐷+1)上的拓扑场理论(拓扑量子场论)的图拉耶夫-维罗(Turaev-Viro)表述,明确地实现了对称理论和TQFT之间的全息三明治关系。一般来说,与对称 TQFT𝐷 相对应的精确特征状态来自 TQFT𝐷+1 中的弗罗贝尼斯代数。对于 𝐷=2,我们构建的特征状态能精确地产生二维有理 CFT 路径积分,这奇妙地将连续场论路径积分与图拉夫-维罗状态和联系在一起。我们还设计并说明了𝐷=2, 3 的数值方法,以寻找作为对称 TQFT𝐷 之间相变点的 CFT𝐷。最后,由于RG算子实际上是一个精确的解析全息张量网络,我们计算了 "体界 "相关因子,并将它们与𝐷=2时的AdS/CFT字典进行了比较。令人欣慰的是,鉴于我们的精确度,它们在数值上是兼容的,尽管还需要进一步的工作来探索与 AdS/CFT 对应关系的精确联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信