Hybrid-order topology in unconventional magnets of Eu-based Zintl compounds with surface-dependent quantum geometry

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Yufei Zhao, Yiyang Jiang, Hyeonhu Bae, Kamal Das, Yongkang Li, Chao-Xing Liu, Binghai Yan
{"title":"Hybrid-order topology in unconventional magnets of Eu-based Zintl compounds with surface-dependent quantum geometry","authors":"Yufei Zhao, Yiyang Jiang, Hyeonhu Bae, Kamal Das, Yongkang Li, Chao-Xing Liu, Binghai Yan","doi":"10.1103/physrevb.110.205111","DOIUrl":null,"url":null,"abstract":"The exploration of magnetic topological insulators is instrumental in exploring axion electrodynamics and intriguing transport phenomena, such as the quantum anomalous Hall effect. Here, we report that a family of magnetic compounds <mjx-container ctxtmenu_counter=\"46\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(13 (8 0 (7 (6 1 5 2) 3 4)) 12 (11 9 10))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"8,11\" data-semantic-content=\"12\" data-semantic- data-semantic-owns=\"8 12 11\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper E u Subscript 2 n plus 1 Baseline upper I n 2\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,7\" data-semantic- data-semantic-owns=\"0 7\" data-semantic-parent=\"13\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">E</mjx-c><mjx-c style=\"padding-top: 0.657em;\">u</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow data-semantic-children=\"6,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"6 3 4\" data-semantic-parent=\"8\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"1 5 2\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑛</mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"7\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"13\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"9,10\" data-semantic- data-semantic-owns=\"9 10\" data-semantic-parent=\"13\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">I</mjx-c><mjx-c style=\"padding-top: 0.657em;\">n</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>(As,<mjx-container ctxtmenu_counter=\"47\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(10 (2 0 1) (9 (8 3 7 4) 5 6))\"><mjx-msub data-semantic-children=\"2,9\" data-semantic- data-semantic-owns=\"2 9\" data-semantic-role=\"endpunct\" data-semantic-speech=\"upper S b right parenthesis Subscript 2 n plus 2\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-children=\"0,1\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"10\" data-semantic-role=\"endpunct\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">S</mjx-c><mjx-c style=\"padding-top: 0.706em;\">b</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"2\" data-semantic-role=\"closefence\" data-semantic-type=\"punctuation\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.251em;\"><mjx-mrow data-semantic-children=\"8,6\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"8 5 6\" data-semantic-parent=\"10\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"3,4\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"3 7 4\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑛</mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"9\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> (<mjx-container ctxtmenu_counter=\"48\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(8 (7 0 1 2) 3 4 5 6)\"><mjx-mrow data-semantic-children=\"7,3,4,5,6\" data-semantic-content=\"3,5\" data-semantic- data-semantic-owns=\"7 3 4 5 6\" data-semantic-role=\"sequence\" data-semantic-speech=\"n equals 0 comma 1 comma 2\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑛</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"7\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>0</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"8\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"2\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"8\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"2\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>) exhibit both gapless Dirac surface states and chiral hinge modes. Such a hybrid-order topology hatches surface-dependent quantum geometry. By mapping the responses into real space, we demonstrate the existence of chiral hinge modes along the <mjx-container ctxtmenu_counter=\"49\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> direction, which originate from the half-quantized anomalous Hall effect on two gapped <mjx-container ctxtmenu_counter=\"50\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(9 (6 0 5 1) 2 (8 3 7 4))\"><mjx-mrow data-semantic-children=\"6,8\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"6 2 8\" data-semantic-role=\"division\" data-semantic-speech=\"a c divided by b c\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"0 5 1\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"9\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"3,4\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"3 7 4\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑏</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-math></mjx-container> facets due to Berry curvature, while the unpinned Dirac surface states on the gapless <mjx-container ctxtmenu_counter=\"51\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 2 1)\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"0 2 1\" data-semantic-role=\"implicit\" data-semantic-speech=\"a b\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑏</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> facet generate an intrinsic nonlinear anomalous Hall effect due to the quantum metric. When <mjx-container ctxtmenu_counter=\"52\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(11 (2 0 1) 9 (5 3 4) 10 (8 6 7))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5,8\" data-semantic-content=\"9,10\" data-semantic- data-semantic-owns=\"2 9 5 10 8\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper E u 3 upper I n 2 upper A s 4\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">E</mjx-c><mjx-c style=\"padding-top: 0.657em;\">u</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">I</mjx-c><mjx-c style=\"padding-top: 0.657em;\">n</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"6,7\" data-semantic- data-semantic-owns=\"6 7\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.662em;\">A</mjx-c><mjx-c style=\"padding-top: 0.662em;\">s</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>4</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> is polarized to the ferromagnetic phase by an external magnetic field, it becomes an ideal Weyl semimetal with a single pair of type-I Weyl points and no extra Fermi pocket. Our work predicts rich topological states sensitive to magnetic structures, quantum geometry-induced transport, and topological superconductivity if proximitized with a superconductor.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"28 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205111","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of magnetic topological insulators is instrumental in exploring axion electrodynamics and intriguing transport phenomena, such as the quantum anomalous Hall effect. Here, we report that a family of magnetic compounds Eu2𝑛+1In2(As,Sb)2𝑛+2 (𝑛=0,1,2) exhibit both gapless Dirac surface states and chiral hinge modes. Such a hybrid-order topology hatches surface-dependent quantum geometry. By mapping the responses into real space, we demonstrate the existence of chiral hinge modes along the 𝑐 direction, which originate from the half-quantized anomalous Hall effect on two gapped 𝑎𝑐/𝑏𝑐 facets due to Berry curvature, while the unpinned Dirac surface states on the gapless 𝑎𝑏 facet generate an intrinsic nonlinear anomalous Hall effect due to the quantum metric. When Eu3In2As4 is polarized to the ferromagnetic phase by an external magnetic field, it becomes an ideal Weyl semimetal with a single pair of type-I Weyl points and no extra Fermi pocket. Our work predicts rich topological states sensitive to magnetic structures, quantum geometry-induced transport, and topological superconductivity if proximitized with a superconductor.
具有表面量子几何特性的 Eu 基 Zintl 化合物非常规磁体中的混合阶拓扑结构
探索磁性拓扑绝缘体有助于探索轴心电动力学和有趣的输运现象,如量子反常霍尔效应。在这里,我们报告了一系列磁性化合物 Eu2𝑛+1In2(As,Sb)2𝑛+2 (𝑛=0,1,2)同时表现出无间隙的狄拉克表面态和手性铰链模式。这种混合阶拓扑结构孵化出依赖于表面的量子几何。通过将响应映射到实数空间,我们证明了沿𝑐方向存在手性铰链模式,它源于两个有间隙的𝑎𝑐/𝑏𝑐面上由于贝里曲率而产生的半量化反常霍尔效应,而无间隙的𝑎𝑏面上的无钉迪拉克表面态则由于量子度量而产生内在的非线性反常霍尔效应。当 Eu3In2As4 被外磁场极化为铁磁相时,它就变成了理想的韦尔半金属,具有一对 I 型韦尔点,没有额外的费米口袋。我们的工作预测了丰富的拓扑态,这些拓扑态对磁性结构、量子几何诱导的输运以及与超导体近似的拓扑超导性非常敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信