Highly Luminescent Manganese-Doped 2D Hybrid Perovskite Nanoplatelets with Dual Emissions Controlled Through Layer Thickness Modulation

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Amar Nath Yadav, Sung Woo Jang, Tuhin Samanta, Jeong Min Seo, Joo Hyeong Han, Noolu Srinivasa Manikanta Viswanath, Yong Min Park, Won Bin Im
{"title":"Highly Luminescent Manganese-Doped 2D Hybrid Perovskite Nanoplatelets with Dual Emissions Controlled Through Layer Thickness Modulation","authors":"Amar Nath Yadav,&nbsp;Sung Woo Jang,&nbsp;Tuhin Samanta,&nbsp;Jeong Min Seo,&nbsp;Joo Hyeong Han,&nbsp;Noolu Srinivasa Manikanta Viswanath,&nbsp;Yong Min Park,&nbsp;Won Bin Im","doi":"10.1002/adom.202401460","DOIUrl":null,"url":null,"abstract":"<p>Doping semiconductor nanomaterials with manganese ion (Mn<sup>2+</sup>) introduce a well-defined photoactive <i>d-d</i> level within the band structure, paving the way for diverse applications. Although Mn doping in single-layer 2D hybrid perovskites (<i>n</i> = 1) has been extensively studied, limited research has been conducted on doping with modulation of the layer thickness. Herein, Mn<sup>2+</sup> doping in hybrid 2D perovskite nanoplatelets (NPLs), L<sub>2</sub>A<sub>n-1</sub>[Pb<sub>1-x</sub>Mn<sub>x</sub>]<sub>n</sub>Br<sub>3n+1</sub> (where L = butylammonium, A = methylammonium), with variations in Mn concentration (<i>x</i> = 0–0.60) and layer thickness (<i>n</i> = 1–3) is reported. Substitutional doping of Mn significantly increases the photoluminescence quantum yield as well as the rate of energy transfer efficiency, which strongly depends on the layer thickness of NPLs. The Mn concentration in 2D NPLs determines the rate of forward and backward energy transfer. Low-temperature emission spectra allow to determine thickness-dependent exciton binding energy for Mn-doped 2D NPLs (<i>x</i> = 0.5) with values of 410 ± 11 meV (<i>n</i> = 1), 188 ± 9 meV (<i>n</i> = 2), and 151 ± 17 meV (<i>n</i> = 3). The faster dissociation of band-edge excitons into free carriers at Mn<sup>2+</sup> sites results in high brightness with an excellent CRI of 89.2 for the white light-emitting diode.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 31","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401460","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401460","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Doping semiconductor nanomaterials with manganese ion (Mn2+) introduce a well-defined photoactive d-d level within the band structure, paving the way for diverse applications. Although Mn doping in single-layer 2D hybrid perovskites (n = 1) has been extensively studied, limited research has been conducted on doping with modulation of the layer thickness. Herein, Mn2+ doping in hybrid 2D perovskite nanoplatelets (NPLs), L2An-1[Pb1-xMnx]nBr3n+1 (where L = butylammonium, A = methylammonium), with variations in Mn concentration (x = 0–0.60) and layer thickness (n = 1–3) is reported. Substitutional doping of Mn significantly increases the photoluminescence quantum yield as well as the rate of energy transfer efficiency, which strongly depends on the layer thickness of NPLs. The Mn concentration in 2D NPLs determines the rate of forward and backward energy transfer. Low-temperature emission spectra allow to determine thickness-dependent exciton binding energy for Mn-doped 2D NPLs (x = 0.5) with values of 410 ± 11 meV (n = 1), 188 ± 9 meV (n = 2), and 151 ± 17 meV (n = 3). The faster dissociation of band-edge excitons into free carriers at Mn2+ sites results in high brightness with an excellent CRI of 89.2 for the white light-emitting diode.

Abstract Image

通过层厚调制控制双发射的掺锰二维混合包光体高发光纳米片
在半导体纳米材料中掺入锰离子(Mn2+)会在带状结构中引入一个明确的光活性 d-d 电平,从而为各种应用铺平道路。尽管对单层二维混合过氧化物晶石(n = 1)中的锰掺杂进行了广泛研究,但对掺杂层厚度调制的研究还很有限。本文报告了在混合二维包晶纳米片(NPLs)L2An-1[Pb1-xMnx]nBr3n+1(其中 L = 丁铵,A = 甲铵)中掺入 Mn2+ 的情况,以及 Mn 浓度(x = 0-0.60)和层厚度(n = 1-3)的变化。锰的取代掺杂大大提高了光致发光量子产率和能量传递效率,而这与 NPL 的层厚度密切相关。二维 NPL 中的锰浓度决定了正向和反向能量传输速率。通过低温发射光谱,可以确定掺锰的二维 NPL(x = 0.5)的激子结合能与厚度有关,其值分别为 410 ± 11 meV(n = 1)、188 ± 9 meV(n = 2)和 151 ± 17 meV(n = 3)。由于带边激子在 Mn2+ 位点更快地解离成自由载流子,因此白光发光二极管的亮度很高,CRI 达到 89.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信