Flat comodules and contramodules as directed colimits, and cotorsion periodicity

Pub Date : 2024-10-09 DOI:10.1007/s40062-024-00358-1
Leonid Positselski
{"title":"Flat comodules and contramodules as directed colimits, and cotorsion periodicity","authors":"Leonid Positselski","doi":"10.1007/s40062-024-00358-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is a follow-up to Positselski and Št’ovíček (Flat quasi-coherent sheaves as directed colimits, and quasi-coherent cotorsion periodicity. Electronic preprint arXiv:2212.09639 [math.AG]). We consider two algebraic settings of comodules over a coring and contramodules over a topological ring with a countable base of two-sided ideals. These correspond to two (noncommutative) algebraic geometry settings of certain kind of stacks and ind-affine ind-schemes. In the context of a coring <span>\\({\\mathcal {C}}\\)</span> over a noncommutative ring <i>A</i>, we show that all <i>A</i>-flat <span>\\({\\mathcal {C}}\\)</span>-comodules are <span>\\(\\aleph _1\\)</span>-directed colimits of <i>A</i>-countably presentable <i>A</i>-flat <span>\\({\\mathcal {C}}\\)</span>-comodules. In the context of a complete, separated topological ring <span>\\({\\mathfrak {R}}\\)</span> with a countable base of neighborhoods of zero consisting of two-sided ideals, we prove that all flat <span>\\({\\mathfrak {R}}\\)</span>-contramodules are <span>\\(\\aleph _1\\)</span>-directed colimits of countably presentable flat <span>\\({\\mathfrak {R}}\\)</span>-contramodules. We also describe arbitrary complexes, short exact sequences, and pure acyclic complexes of <i>A</i>-flat <span>\\({\\mathcal {C}}\\)</span>-comodules and flat <span>\\({\\mathfrak {R}}\\)</span>-contramodules as <span>\\(\\aleph _1\\)</span>-directed colimits of similar complexes of countably presentable objects. The arguments are based on a very general category-theoretic technique going back to an unpublished 1977 preprint of Ulmer and rediscovered in Positselski (Notes on limits of accessible categories. Electronic preprint arXiv:2310.16773 [math.CT]). Applications to cotorsion periodicity and coderived categories of flat objects in the respective settings are discussed. In particular, in any acyclic complex of cotorsion <span>\\({\\mathfrak {R}}\\)</span>-contramodules, all the contramodules of cocycles are cotorsion.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-024-00358-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00358-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is a follow-up to Positselski and Št’ovíček (Flat quasi-coherent sheaves as directed colimits, and quasi-coherent cotorsion periodicity. Electronic preprint arXiv:2212.09639 [math.AG]). We consider two algebraic settings of comodules over a coring and contramodules over a topological ring with a countable base of two-sided ideals. These correspond to two (noncommutative) algebraic geometry settings of certain kind of stacks and ind-affine ind-schemes. In the context of a coring \({\mathcal {C}}\) over a noncommutative ring A, we show that all A-flat \({\mathcal {C}}\)-comodules are \(\aleph _1\)-directed colimits of A-countably presentable A-flat \({\mathcal {C}}\)-comodules. In the context of a complete, separated topological ring \({\mathfrak {R}}\) with a countable base of neighborhoods of zero consisting of two-sided ideals, we prove that all flat \({\mathfrak {R}}\)-contramodules are \(\aleph _1\)-directed colimits of countably presentable flat \({\mathfrak {R}}\)-contramodules. We also describe arbitrary complexes, short exact sequences, and pure acyclic complexes of A-flat \({\mathcal {C}}\)-comodules and flat \({\mathfrak {R}}\)-contramodules as \(\aleph _1\)-directed colimits of similar complexes of countably presentable objects. The arguments are based on a very general category-theoretic technique going back to an unpublished 1977 preprint of Ulmer and rediscovered in Positselski (Notes on limits of accessible categories. Electronic preprint arXiv:2310.16773 [math.CT]). Applications to cotorsion periodicity and coderived categories of flat objects in the respective settings are discussed. In particular, in any acyclic complex of cotorsion \({\mathfrak {R}}\)-contramodules, all the contramodules of cocycles are cotorsion.

分享
查看原文
作为有向 colimits 的扁平逗点和反逗点,以及 cotorsion 周期性
本文是 Positselski 和 Št'ovíček (Flat quasi-coherent sheaves as directed colimits, and quasi-coherent cotorsion periodicity.电子预印本 arXiv:2212.09639 [math.AG])。我们考虑了两个代数环境,即冠层上的共模和具有可数双面理想基的拓扑环上的对模。这对应于某类堆栈和吲哚-阿芬吲哚结构的两种(非交换)代数几何环境。在非交换环 A 上的 coring \({\mathcal {C}}\) 的背景下,我们证明了所有的 A-flat \({\mathcal {C}}\)-comodules 都是\(\aleph _1\)-directed colimits of A-countably presentable A-flat \({\mathcal {C}}\)-comodules。在一个完整的、分离的拓扑环({\mathfrak {R}})的上下文中,它有一个由两面理想组成的零邻域的可数基,我们证明了所有平的({\mathfrak {R}})-康模都是(\aleph _1\)-可数现存平的({\mathfrak {R}})-康模的定向列。我们还描述了任意复数、短精确序列、A-平面({\mathcal {C}}\)-康模和平面({\mathfrak {R}}\)-康模的纯无循环复数,它们都是(\(\aleph _1\)-可数现存对象的类似复数的指向列。这些论证基于一种非常普遍的范畴理论技术,它可以追溯到乌尔姆 1977 年未发表的预印本,并在波西泽尔斯基(Positselski)的《可访问范畴极限注释》中被重新发现。电子预印本 arXiv:2310.16773 [math.CT])。我们讨论了在各自环境中对可循环周期性和平面对象的编码范畴的应用。特别是,在任何可旋转({\mathfrak {R}}\)-contramodules 的无环复数中,所有可循环的contramodules 都是可旋转的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信