A review on vision-based deep learning techniques for damage detection in bolted joints

Q2 Engineering
Zahir Malik, Ansh Mirani, Tanneru Gopi, Mallika Alapati
{"title":"A review on vision-based deep learning techniques for damage detection in bolted joints","authors":"Zahir Malik,&nbsp;Ansh Mirani,&nbsp;Tanneru Gopi,&nbsp;Mallika Alapati","doi":"10.1007/s42107-024-01139-0","DOIUrl":null,"url":null,"abstract":"<div><p>Bolted connections are widely used in steel structures. Detection of bolt loosening is the prime concern in the bolted joints to avoid sudden failure leading to catastrophe. Loosening of the bolts causes interfacial movement by reducing the pre-torque when subjected to vibrations due to dynamic loads. With the advent of computing capabilities, sensor technologies, and machine learning model accuracy in bolt loosening detection, damage recognition efficiency in bolted joints has increased. Integrating deep learning with machine vision, effective models can be proposed without human interventions. The present paper summarizes the research review on bolt loosening detection using machine vision and deep learning techniques from the past decade.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"25 8","pages":"5697 - 5707"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01139-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Bolted connections are widely used in steel structures. Detection of bolt loosening is the prime concern in the bolted joints to avoid sudden failure leading to catastrophe. Loosening of the bolts causes interfacial movement by reducing the pre-torque when subjected to vibrations due to dynamic loads. With the advent of computing capabilities, sensor technologies, and machine learning model accuracy in bolt loosening detection, damage recognition efficiency in bolted joints has increased. Integrating deep learning with machine vision, effective models can be proposed without human interventions. The present paper summarizes the research review on bolt loosening detection using machine vision and deep learning techniques from the past decade.

Abstract Image

基于视觉的螺栓连接损伤检测深度学习技术综述
螺栓连接广泛应用于钢结构中。检测螺栓松动是螺栓连接的首要问题,以避免突然失效导致灾难。螺栓松动会在承受动态载荷振动时减少预扭矩,从而导致界面移动。随着计算能力、传感器技术和机器学习模型在螺栓松动检测中准确性的提高,螺栓连接中的损坏识别效率也随之提高。将深度学习与机器视觉相结合,可以提出有效的模型,而无需人工干预。本文总结了近十年来利用机器视觉和深度学习技术进行螺栓松动检测的研究综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信