{"title":"Homogenisation Problems for Free Discontinuity Functionals with Bounded Cohesive Surface Terms","authors":"Gianni Dal Maso, Rodica Toader","doi":"10.1007/s00205-024-02053-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study stochastic homogenisation problems for free discontinuity functionals under a new assumption on the surface terms, motivated by cohesive fracture models. The results are obtained using a characterization of the limit functional by means of the asymptotic behaviour of suitable minimisation problems on cubes with very simple boundary conditions. An important role is played by the subadditive ergodic theorem.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02053-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study stochastic homogenisation problems for free discontinuity functionals under a new assumption on the surface terms, motivated by cohesive fracture models. The results are obtained using a characterization of the limit functional by means of the asymptotic behaviour of suitable minimisation problems on cubes with very simple boundary conditions. An important role is played by the subadditive ergodic theorem.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.