The Equality Case in the Substatic Heintze–Karcher Inequality

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Stefano Borghini, Mattia Fogagnolo, Andrea Pinamonti
{"title":"The Equality Case in the Substatic Heintze–Karcher Inequality","authors":"Stefano Borghini,&nbsp;Mattia Fogagnolo,&nbsp;Andrea Pinamonti","doi":"10.1007/s00205-024-02022-7","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a rigidity statement for the equality case of the Heintze–Karcher inequality in substatic manifolds. We apply such a result in the warped product setting to fully remove assumption (H4) in the celebrated Brendle’s characterization of constant mean curvature hypersurfaces in warped products.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02022-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02022-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a rigidity statement for the equality case of the Heintze–Karcher inequality in substatic manifolds. We apply such a result in the warped product setting to fully remove assumption (H4) in the celebrated Brendle’s characterization of constant mean curvature hypersurfaces in warped products.

Substatic Heintze-Karcher 不等式中的平等案例
我们为亚静态流形中的海因策-卡彻不等式的相等情况提供了一个刚度声明。我们将这一结果应用于翘曲积中,从而完全消除了著名的布伦德尔对翘曲积中恒定均值曲率超曲面的描述中的假设 (H4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信