{"title":"Optimization seismic resilience: a machine learning approach for vertical irregular buildings","authors":"Ahmed Hamed El-Sayed SALAMA","doi":"10.1007/s42107-024-01173-y","DOIUrl":null,"url":null,"abstract":"<div><p>The paper is a landmark in earthquake and structural engineering, with modern machine-learning techniques applied to introduce innovative investigations into forecasting seismic behavior for vertically uneven structures using sophisticated machine-learning methodologies. The research constructs a very accurate model for making predictions using the XGBoost algorithm with the Owl Search algorithm (OSA) for hyperparameter tuning, which explicitly considers complex behavior in the structures under seismic stresses. The variety within the dataset is broad and covers all kinds of irregularities in the structures, such as stiffness and mass irregularities; thus, it has been used to accurately represent the complex characteristics of actual buildings. The results indicate a strong dependence of base shear capacity and seismic performance on the irregularity of stiffness and mass. The test accuracy of the optimized XGBoost model was 98.8%. The result was better than that of conventional models, thus proving the effectiveness of integrating the Owl Search Algorithm in further fine-tuning the parameters. These results give new variables as insight into affecting earthquake resilience and represent practical applications that enhance building design and retrofitting processes. This is further underlined by the proposal of future research directions that would extend the model’s applicability to other structural anomalies and include additional machine-learning methodologies. Through AI-driven approaches, this study captured complicated structural dynamics with the utmost precision, thus opening new insights that could be brought into practice to improve building design and retrofitting strategies in a way that would diminish the impact of seismic events.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"25 8","pages":"6233 - 6248"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01173-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The paper is a landmark in earthquake and structural engineering, with modern machine-learning techniques applied to introduce innovative investigations into forecasting seismic behavior for vertically uneven structures using sophisticated machine-learning methodologies. The research constructs a very accurate model for making predictions using the XGBoost algorithm with the Owl Search algorithm (OSA) for hyperparameter tuning, which explicitly considers complex behavior in the structures under seismic stresses. The variety within the dataset is broad and covers all kinds of irregularities in the structures, such as stiffness and mass irregularities; thus, it has been used to accurately represent the complex characteristics of actual buildings. The results indicate a strong dependence of base shear capacity and seismic performance on the irregularity of stiffness and mass. The test accuracy of the optimized XGBoost model was 98.8%. The result was better than that of conventional models, thus proving the effectiveness of integrating the Owl Search Algorithm in further fine-tuning the parameters. These results give new variables as insight into affecting earthquake resilience and represent practical applications that enhance building design and retrofitting processes. This is further underlined by the proposal of future research directions that would extend the model’s applicability to other structural anomalies and include additional machine-learning methodologies. Through AI-driven approaches, this study captured complicated structural dynamics with the utmost precision, thus opening new insights that could be brought into practice to improve building design and retrofitting strategies in a way that would diminish the impact of seismic events.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.