First-principles study of structural, elastic, mechanical, electronic, magnetic, optical, and thermoelectric properties of CoFeTe half-heusler alloy

IF 2.5 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Samih , E. Salmani , Hussein. Sabbah , R. El Fdil , Z. Fadil , Fohad Mabood Husain , Seong Cheol Kim , Chaitany Jayprakash Raorane
{"title":"First-principles study of structural, elastic, mechanical, electronic, magnetic, optical, and thermoelectric properties of CoFeTe half-heusler alloy","authors":"A. Samih ,&nbsp;E. Salmani ,&nbsp;Hussein. Sabbah ,&nbsp;R. El Fdil ,&nbsp;Z. Fadil ,&nbsp;Fohad Mabood Husain ,&nbsp;Seong Cheol Kim ,&nbsp;Chaitany Jayprakash Raorane","doi":"10.1016/j.jmmm.2024.172628","DOIUrl":null,"url":null,"abstract":"<div><div>Half-Heusler CoFeTe alloy is analyzed using Density Functional Theory (DFT) calculations based on the GGA-PBE and GGA + U approximations. The results reveal that CoFeTe was most stable in the β-phase with a ferromagnetic configuration. As determined by the density of states analysis, metallic behavior is observed for the GGA-PBE approximation, whereas a semi metallic nature is observed for the GGA + U approximation. Phonon dispersion, elastic, and mechanical analyses confirm the dynamical and mechanical stability of the alloy. The thermoelectric properties suggest that CoFeTe shows potential for thermoelectric applications, with an increasing Seebeck coefficient and power factor, reaching a ZT value of 0.2 at 800 K. These findings highlight the potential of CoFeTe for applications in thermoelectric devices.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"611 ","pages":"Article 172628"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324009193","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Half-Heusler CoFeTe alloy is analyzed using Density Functional Theory (DFT) calculations based on the GGA-PBE and GGA + U approximations. The results reveal that CoFeTe was most stable in the β-phase with a ferromagnetic configuration. As determined by the density of states analysis, metallic behavior is observed for the GGA-PBE approximation, whereas a semi metallic nature is observed for the GGA + U approximation. Phonon dispersion, elastic, and mechanical analyses confirm the dynamical and mechanical stability of the alloy. The thermoelectric properties suggest that CoFeTe shows potential for thermoelectric applications, with an increasing Seebeck coefficient and power factor, reaching a ZT value of 0.2 at 800 K. These findings highlight the potential of CoFeTe for applications in thermoelectric devices.
CoFeTe 半休斯勒合金结构、弹性、机械、电子、磁性、光学和热电特性的第一性原理研究
利用基于 GGA-PBE 和 GGA + U 近似的密度泛函理论(DFT)计算分析了半休斯勒 CoFeTe 合金。结果表明,CoFeTe 在具有铁磁性构型的 β 相中最为稳定。根据态密度分析确定,GGA-PBE 近似值观察到金属行为,而 GGA + U 近似值观察到半金属性质。声子色散、弹性和机械分析证实了合金的动力学和机械稳定性。热电性能表明 CoFeTe 具有热电应用潜力,其塞贝克系数和功率因数不断增加,在 800 K 时 ZT 值达到 0.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnetism and Magnetic Materials
Journal of Magnetism and Magnetic Materials 物理-材料科学:综合
CiteScore
5.30
自引率
11.10%
发文量
1149
审稿时长
59 days
期刊介绍: The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public. Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged. In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism. Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信