Impulsive quasi-containment control in stochastic heterogeneous multiplex networks

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xin Jin , Zhengxin Wang , Xiaojie Chen
{"title":"Impulsive quasi-containment control in stochastic heterogeneous multiplex networks","authors":"Xin Jin ,&nbsp;Zhengxin Wang ,&nbsp;Xiaojie Chen","doi":"10.1016/j.chaos.2024.115666","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we propose a model for heterogeneous multiplex networks with stochastic perturbations. We consider multiple leaders in the networks and design an impulsive controller for cost saving to investigate the containment control problem in the stochastic heterogeneous multiplex networks. By means of the Lyapunov function method and stochastic impulsive differential equations theory, we obtain sufficient conditions in which the states of all followers converge to the bounded convex hull spanned by the states of multiple leaders. We also obtain the upper bound of the convergence region of the synchronization error system. Furthermore, we study the case with time delay and derive the sufficient conditions for the states of synchronization error to converge to the bounded region. Finally, we give two numerical examples to verify the theoretical results.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115666"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012189","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a model for heterogeneous multiplex networks with stochastic perturbations. We consider multiple leaders in the networks and design an impulsive controller for cost saving to investigate the containment control problem in the stochastic heterogeneous multiplex networks. By means of the Lyapunov function method and stochastic impulsive differential equations theory, we obtain sufficient conditions in which the states of all followers converge to the bounded convex hull spanned by the states of multiple leaders. We also obtain the upper bound of the convergence region of the synchronization error system. Furthermore, we study the case with time delay and derive the sufficient conditions for the states of synchronization error to converge to the bounded region. Finally, we give two numerical examples to verify the theoretical results.
随机异构多路复用网络中的脉冲准遏制控制
在这项工作中,我们提出了一个具有随机扰动的异构多路复用网络模型。我们考虑了网络中的多个领导者,并设计了一个用于节约成本的脉冲控制器,以研究随机异构多路复用网络中的遏制控制问题。通过 Lyapunov 函数方法和随机脉冲微分方程理论,我们得到了所有跟随者的状态收敛到多个领导者状态所跨的有界凸壳的充分条件。我们还得到了同步误差系统收敛区域的上界。此外,我们还研究了有时间延迟的情况,并推导出同步误差状态收敛到有界区域的充分条件。最后,我们给出了两个数值示例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信