Bipartite containment tracking for nonlinear MASs under FDI attack based on model-free adaptive iterative learning control

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xinning He, Zhongsheng Hou
{"title":"Bipartite containment tracking for nonlinear MASs under FDI attack based on model-free adaptive iterative learning control","authors":"Xinning He,&nbsp;Zhongsheng Hou","doi":"10.1016/j.neucom.2024.128783","DOIUrl":null,"url":null,"abstract":"<div><div>The bipartite containment control problem for a type of heterogeneous multi-agent systems (MASs) under false data injection (FDI) attack is handled in this work by using the distributed model-free adaptive iterative learning control scheme with attack compensation. The unknown non-affine nonlinear dynamics of each agent is first transformed into an equivalent attack-related data model along the iteration axis using a compact form dynamic linearization method. Then, a distributed model-free adaptive iterative learning bipartite containment control (DMFAILBCC) scheme is constructed by employing I/O data from MASs, and the convergence is proved by rigorous mathematical analysis In addition, the updated control method and the convergence analysis will be extended to iteration switching topologies. Finally, the performance of the two proposed schemes is validated through numerical simulations and comparisons with different control schemes.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128783"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015546","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The bipartite containment control problem for a type of heterogeneous multi-agent systems (MASs) under false data injection (FDI) attack is handled in this work by using the distributed model-free adaptive iterative learning control scheme with attack compensation. The unknown non-affine nonlinear dynamics of each agent is first transformed into an equivalent attack-related data model along the iteration axis using a compact form dynamic linearization method. Then, a distributed model-free adaptive iterative learning bipartite containment control (DMFAILBCC) scheme is constructed by employing I/O data from MASs, and the convergence is proved by rigorous mathematical analysis In addition, the updated control method and the convergence analysis will be extended to iteration switching topologies. Finally, the performance of the two proposed schemes is validated through numerical simulations and comparisons with different control schemes.
基于无模型自适应迭代学习控制的 FDI 攻击下非线性 MAS 的两端遏制跟踪
本研究利用带攻击补偿的分布式无模型自适应迭代学习控制方案,解决了在虚假数据注入(FDI)攻击下异构多代理系统(MAS)的双向遏制控制问题。首先,利用紧凑形式动态线性化方法将每个代理的未知非参数非线性动态沿迭代轴转换为与攻击相关的等效数据模型。然后,利用 MAS 的 I/O 数据,构建了分布式无模型自适应迭代学习双分区包含控制(DMFAILBCC)方案,并通过严格的数学分析证明了其收敛性。最后,通过数值模拟以及与不同控制方案的比较,验证了两种拟议方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信