Improving fatigue life of a titanium alloy through coupled electromagnetic treatments

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL
Hongfei Sun , Liang Zhang , Yuan Wang , Yi Qin , Zhiqiang Xie , Lila Ashi , Ning Xu , Kunlan Huang , Jie Wang , Jigang Huang
{"title":"Improving fatigue life of a titanium alloy through coupled electromagnetic treatments","authors":"Hongfei Sun ,&nbsp;Liang Zhang ,&nbsp;Yuan Wang ,&nbsp;Yi Qin ,&nbsp;Zhiqiang Xie ,&nbsp;Lila Ashi ,&nbsp;Ning Xu ,&nbsp;Kunlan Huang ,&nbsp;Jie Wang ,&nbsp;Jigang Huang","doi":"10.1016/j.ijfatigue.2024.108676","DOIUrl":null,"url":null,"abstract":"<div><div>TC11 titanium alloy is widely used in the manufacture of key components such as blades of gas turbine and aero engine because of its high specific strength and good processing performance. In the case of gas turbine or aero engine, the fatigue performance of TC11 will directly determine the life of the turbine or engine, and the surface residual stress generated on the alloy during manufacturing often affects the fatigue life of the material. In this study, a new method of coupled electromagnetic treatment (CEMT) was applied to regulate the surface residual stress of the alloy after manufacturing, so as to improve the fatigue life of the TC11. The results show that after the CEMT, the residual compressive stress in the length direction and width direction increased by 63.7% and 56.0% respectively, the fatigue life of the TC11 is increased by 39.9%. The microstructure analysis shows that after CEMT, the width of fatigue striations is significantly reduced. This paper proposes that CEMT can be used as an effective method to adjust the residual stress of materials and improve the fatigue life of titanium alloys. The research is also relevant for improvement of the fatigue life of other alloy materials.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"191 ","pages":"Article 108676"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005358","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

TC11 titanium alloy is widely used in the manufacture of key components such as blades of gas turbine and aero engine because of its high specific strength and good processing performance. In the case of gas turbine or aero engine, the fatigue performance of TC11 will directly determine the life of the turbine or engine, and the surface residual stress generated on the alloy during manufacturing often affects the fatigue life of the material. In this study, a new method of coupled electromagnetic treatment (CEMT) was applied to regulate the surface residual stress of the alloy after manufacturing, so as to improve the fatigue life of the TC11. The results show that after the CEMT, the residual compressive stress in the length direction and width direction increased by 63.7% and 56.0% respectively, the fatigue life of the TC11 is increased by 39.9%. The microstructure analysis shows that after CEMT, the width of fatigue striations is significantly reduced. This paper proposes that CEMT can be used as an effective method to adjust the residual stress of materials and improve the fatigue life of titanium alloys. The research is also relevant for improvement of the fatigue life of other alloy materials.
通过耦合电磁处理提高钛合金的疲劳寿命
TC11 钛合金因具有较高的比强度和良好的加工性能,被广泛应用于燃气轮机和航空发动机叶片等关键部件的制造。在燃气轮机或航空发动机中,TC11 的疲劳性能将直接决定涡轮机或发动机的寿命,而合金在制造过程中产生的表面残余应力往往会影响材料的疲劳寿命。本研究采用一种新的耦合电磁处理(CEMT)方法来调节合金制造后的表面残余应力,从而提高 TC11 的疲劳寿命。结果表明,经过 CEMT 处理后,长度方向和宽度方向的残余压应力分别增加了 63.7% 和 56.0%,TC11 的疲劳寿命提高了 39.9%。微观结构分析表明,CEMT 后,疲劳条纹的宽度明显减小。本文提出,CEMT 可以作为调整材料残余应力、提高钛合金疲劳寿命的有效方法。这项研究对提高其他合金材料的疲劳寿命也有借鉴意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信