Developing quantitative Adverse Outcome Pathways: An ordinary differential equation-based computational framework

IF 3.1 Q2 TOXICOLOGY
{"title":"Developing quantitative Adverse Outcome Pathways: An ordinary differential equation-based computational framework","authors":"","doi":"10.1016/j.comtox.2024.100330","DOIUrl":null,"url":null,"abstract":"<div><div>The Adverse Outcome Pathway (AOP) biological framework was introduced in 2012, yet defining a mathematical/computational framework for quantitative AOP (qAOP) development remains an open problem. In order to properly unravel the intricate biological mechanisms described by AOPs and provide quantitative predictions to support risk assessment, a computational model should provide a clear time-course prediction of key events (KEs), as well as describe the key event relationships (KERs) linking a molecular initiating event (MIE) to an adverse outcome (AO). Ultimately, the mathematical description of those links entails the possibility of quantitatively predicting adverse effects based on early events.</div><div>Here, we propose an ordinary differential equation (ODE) - based qAOP framework, as ODEs provide a time-course description of KEs and KERs. We illustrate how the application of computational techniques, such as Bayesian inference and Leave-one-out cross-validation (LOO-CV), can assist AOP development, introducing concepts of qAOP model selection and qAOP updating. Furthermore, we compare ODE and response–response based qAOP models, showing that ODE-based qAOPs can avoid erroneous predictions potentially resulting from response–response qAOPs. Finally, we show how ODE parameter variability can be linked to AO variability across a population. Overall, this framework serves as a valuable mathematical and computational tool for the development of qAOP models, enhancing our comprehension of intricate biological pathways associated with adverse outcomes.</div></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246811132400032X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Adverse Outcome Pathway (AOP) biological framework was introduced in 2012, yet defining a mathematical/computational framework for quantitative AOP (qAOP) development remains an open problem. In order to properly unravel the intricate biological mechanisms described by AOPs and provide quantitative predictions to support risk assessment, a computational model should provide a clear time-course prediction of key events (KEs), as well as describe the key event relationships (KERs) linking a molecular initiating event (MIE) to an adverse outcome (AO). Ultimately, the mathematical description of those links entails the possibility of quantitatively predicting adverse effects based on early events.
Here, we propose an ordinary differential equation (ODE) - based qAOP framework, as ODEs provide a time-course description of KEs and KERs. We illustrate how the application of computational techniques, such as Bayesian inference and Leave-one-out cross-validation (LOO-CV), can assist AOP development, introducing concepts of qAOP model selection and qAOP updating. Furthermore, we compare ODE and response–response based qAOP models, showing that ODE-based qAOPs can avoid erroneous predictions potentially resulting from response–response qAOPs. Finally, we show how ODE parameter variability can be linked to AO variability across a population. Overall, this framework serves as a valuable mathematical and computational tool for the development of qAOP models, enhancing our comprehension of intricate biological pathways associated with adverse outcomes.
开发量化的不良后果路径:基于常微分方程的计算框架
不良后果途径(AOP)生物学框架于 2012 年推出,然而,为定量 AOP(qAOP)开发定义一个数学/计算框架仍然是一个悬而未决的问题。为了正确揭示 AOP 所描述的错综复杂的生物机制,并提供定量预测以支持风险评估,计算模型应提供清晰的关键事件(KEs)时间历程预测,并描述将分子启动事件(MIEs)与不良结果(AOs)联系起来的关键事件关系(KERs)。在此,我们提出了一个基于常微分方程(ODE)的 qAOP 框架,因为常微分方程提供了对关键事件和关键事件关系的时程描述。我们介绍了 qAOP 模型选择和 qAOP 更新的概念,说明了贝叶斯推理和留一交叉验证 (LOO-CV) 等计算技术的应用如何有助于 AOP 的开发。此外,我们还比较了基于 ODE 的 qAOP 模型和基于响应的 qAOP 模型,表明基于 ODE 的 qAOP 可以避免响应式 qAOP 可能导致的错误预测。最后,我们展示了 ODE 参数变异性如何与整个人群的 AO 变异性相关联。总之,这个框架是开发 qAOP 模型的一个宝贵的数学和计算工具,它增强了我们对与不良后果相关的复杂生物途径的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Toxicology
Computational Toxicology Computer Science-Computer Science Applications
CiteScore
5.50
自引率
0.00%
发文量
53
审稿时长
56 days
期刊介绍: Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信