Radially symmetric σ2,p-harmonic maps from n-dimensional annuli into sphere

IF 1.3 2区 数学 Q1 MATHEMATICS
M.S. Shahrokhi-Dehkordi
{"title":"Radially symmetric σ2,p-harmonic maps from n-dimensional annuli into sphere","authors":"M.S. Shahrokhi-Dehkordi","doi":"10.1016/j.na.2024.113682","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a bounded Lipschitz domain <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> and the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional <span><span><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></mrow></msub><mrow><mo>[</mo><mi>u</mi><mo>;</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mrow><mo>|</mo></mrow><mo>∇</mo><mi>u</mi><mo>∧</mo><mo>∇</mo><msup><mrow><mi>u</mi><mrow><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>with <span><math><mrow><mrow><mi>p</mi><mo>∈</mo><mo>]</mo></mrow><mn>1</mn><mo>,</mo><mrow><mi>∞</mi><mo>]</mo></mrow></mrow></math></span>, defined over the space of admissible Sobolev maps <span><span><span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mo>≔</mo><mrow><mo>{</mo><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mo>:</mo><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>∂</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow></mfrac></mrow><mo>}</mo></mrow><mo>.</mo></mrow></math></span></span></span>In this paper, we investigate the multiplicity and uniqueness of extremals and strong local minimisers of the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></mrow></msub><mrow><mo>[</mo><mi>⋅</mi><mo>,</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></mrow></mrow></math></span> in <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Our focus is on the space of admissible Sobolev maps and a topological class of maps known as spherical twists in connection with the Euler–Lagrange equations associated with the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional over <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, referred to as <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-harmonic map equation on <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Our main result reveals a surprising difference between even and odd dimensions, showing <em>infinitely</em> many smooth solutions in even dimensions and only <em>one</em> in odd dimensions. This result is based on a careful analysis of the full versus restricted Euler–Lagrange equations.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113682"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a bounded Lipschitz domain AnRn and the σ2,p-energy functional Fσ2,p[u;An]An|uu|pdx,with p]1,], defined over the space of admissible Sobolev maps Ap(An){uW1,2p(An,Sn1):u|An=x|x|}.In this paper, we investigate the multiplicity and uniqueness of extremals and strong local minimisers of the σ2,p-energy functional Fσ2,p[,An] in Ap(An). Our focus is on the space of admissible Sobolev maps and a topological class of maps known as spherical twists in connection with the Euler–Lagrange equations associated with the σ2,p-energy functional over Ap(An), referred to as σ2,p-harmonic map equation on An. Our main result reveals a surprising difference between even and odd dimensions, showing infinitely many smooth solutions in even dimensions and only one in odd dimensions. This result is based on a careful analysis of the full versus restricted Euler–Lagrange equations.
从 n 维环面到球面的径向对称 σ2,p 谐波映射
考虑有界 Lipschitz 域 An⊂Rn 和 σ2,p 能量函数 Fσ2,p[u;An]≔∫An∇u∧∇u|pdx,with p∈]1,∞], 定义在可容许 Sobolev 映射空间 Ap(An)≔{u∈W1,2p(An,Sn-1) 上:u|∂An=x|x|}。本文将研究 Ap(An) 中 σ2,p 能量函数 Fσ2,p[⋅,An] 的极值和强局部最小值的多重性和唯一性。我们的重点是与 Ap(An) 上的σ2,p-能函数相关的欧拉-拉格朗日方程(称为 An 上的σ2,p-谐波映射方程)有关的可容许索波列夫映射空间和一类被称为球形扭曲的拓扑映射。我们的主要结果揭示了偶数维与奇数维之间的惊人差异,在偶数维中显示出无穷多个平滑解,而在奇数维中只有一个。这一结果基于对完全欧拉-拉格朗日方程与受限欧拉-拉格朗日方程的仔细分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信