Structural parameterizations of vertex integrity

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Tatsuya Gima , Tesshu Hanaka , Yasuaki Kobayashi , Ryota Murai , Hirotaka Ono , Yota Otachi
{"title":"Structural parameterizations of vertex integrity","authors":"Tatsuya Gima ,&nbsp;Tesshu Hanaka ,&nbsp;Yasuaki Kobayashi ,&nbsp;Ryota Murai ,&nbsp;Hirotaka Ono ,&nbsp;Yota Otachi","doi":"10.1016/j.tcs.2024.114954","DOIUrl":null,"url":null,"abstract":"<div><div>The graph parameter <em>vertex integrity</em> measures how vulnerable a graph is to a removal of a small number of vertices. More precisely, a graph with small vertex integrity admits a small number of vertex removals to make the remaining connected components small. In this paper, we initiate a systematic study of structural parameterizations of the problem of computing the unweighted/weighted vertex integrity. As structural graph parameters, we consider well-known parameters such as clique-width, treewidth, pathwidth, treedepth, modular-width, neighborhood diversity, twin cover number, and cluster vertex deletion number. We show several positive and negative results and present sharp complexity contrasts. We also show that the vertex integrity can be approximated within an <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mrow><mi>opt</mi></mrow><mo>)</mo></math></span> factor.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1024 ","pages":"Article 114954"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005711","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The graph parameter vertex integrity measures how vulnerable a graph is to a removal of a small number of vertices. More precisely, a graph with small vertex integrity admits a small number of vertex removals to make the remaining connected components small. In this paper, we initiate a systematic study of structural parameterizations of the problem of computing the unweighted/weighted vertex integrity. As structural graph parameters, we consider well-known parameters such as clique-width, treewidth, pathwidth, treedepth, modular-width, neighborhood diversity, twin cover number, and cluster vertex deletion number. We show several positive and negative results and present sharp complexity contrasts. We also show that the vertex integrity can be approximated within an O(logopt) factor.
顶点完整性的结构参数化
图参数顶点完整性衡量的是一个图在删除少量顶点时的脆弱程度。更确切地说,具有小顶点完整性的图允许删除少量顶点,以使剩余的连通成分变小。在本文中,我们开始系统地研究计算无权/有权顶点完整性问题的结构参数化。作为结构图参数,我们考虑了众所周知的参数,如 clique-width、treewidth、pathwidth、treedepth、modular-width、邻域多样性、孪生覆盖数和簇顶点删除数。我们展示了几个正反结果,并提出了鲜明的复杂性对比。我们还表明,顶点完整性可在 O(logopt) 因子范围内近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信