Protamine-Mediated Tangles Produce Extreme Deoxyribonucleic Acid Compaction

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vikhyaat Ahlawat, Anshika Dhiman, Hashini Ekanayake Mudiyanselage and Huan-Xiang Zhou*, 
{"title":"Protamine-Mediated Tangles Produce Extreme Deoxyribonucleic Acid Compaction","authors":"Vikhyaat Ahlawat,&nbsp;Anshika Dhiman,&nbsp;Hashini Ekanayake Mudiyanselage and Huan-Xiang Zhou*,&nbsp;","doi":"10.1021/jacs.4c1246810.1021/jacs.4c12468","DOIUrl":null,"url":null,"abstract":"<p >In sperm cells, protamine replaces histones to compact DNA 10–20 times more than in somatic cells. To characterize the extreme compaction, we employed confocal microscopy and optical tweezers to determine the conformations and stability of protamine-bound λ-DNA. Confocal images show increasing compaction of λ-DNA at increasing protamine concentration. In the presence of protamine, single λ-DNA molecules form tangles that withstand forces strong enough (∼55 pN) for strand separation and shorten the contour length by up to 40% even at high forces, as well as bends and loops that rupture at 10–40 pN forces. Strand separation nucleates tangles, implicating protamine interactions with DNA bases. Molecular dynamics simulations show that Arg sidechains of protamine each form hydrogen bonds with multiple bases, frequently in the form of a wedge between the two strands of DNA. Protamine may participate in both local and higher-order chromatin organization, leading to extreme compaction and global transcription silencing.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30668–30677 30668–30677"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c12468","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In sperm cells, protamine replaces histones to compact DNA 10–20 times more than in somatic cells. To characterize the extreme compaction, we employed confocal microscopy and optical tweezers to determine the conformations and stability of protamine-bound λ-DNA. Confocal images show increasing compaction of λ-DNA at increasing protamine concentration. In the presence of protamine, single λ-DNA molecules form tangles that withstand forces strong enough (∼55 pN) for strand separation and shorten the contour length by up to 40% even at high forces, as well as bends and loops that rupture at 10–40 pN forces. Strand separation nucleates tangles, implicating protamine interactions with DNA bases. Molecular dynamics simulations show that Arg sidechains of protamine each form hydrogen bonds with multiple bases, frequently in the form of a wedge between the two strands of DNA. Protamine may participate in both local and higher-order chromatin organization, leading to extreme compaction and global transcription silencing.

Abstract Image

原胺介导的缠结会产生极度的脱氧核糖核酸压积
在精子细胞中,原胺取代组蛋白压实DNA的程度是体细胞的10-20倍。为了描述这种极端压实的特征,我们使用共聚焦显微镜和光学镊子来确定与原胺结合的λ-DNA的构象和稳定性。共聚焦图像显示,随着原胺浓度的增加,λ-DNA 的压实程度也在增加。在有原胺存在的情况下,单个 λ-DNA 分子会形成缠结,这种缠结能承受足以导致链分离的强力(55 pN),即使在强力下也能将轮廓长度缩短 40%,还能形成在 10-40 pN 的力下断裂的弯曲和环。链分离会导致缠结,这与原胺与 DNA 碱基的相互作用有关。分子动力学模拟显示,原胺的氩侧链分别与多个碱基形成氢键,经常在 DNA 的两条链之间形成楔形。原胺可能参与局部和高阶染色质组织,导致极度压实和全局转录沉默。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信