{"title":"Impact of Cavity Length Non-uniformity on Reaction Rate Extraction in Strong Coupling Experiments","authors":"Michael A. Michon, and , Blake S. Simpkins*, ","doi":"10.1021/jacs.4c1226910.1021/jacs.4c12269","DOIUrl":null,"url":null,"abstract":"<p >Reports of altered chemical phenomena under vibrational strong coupling, including reaction rates, product distributions, intermolecular forces, and cavity-mediated vibrational energy transfer, have been met with a great deal of skepticism due to several irreproducible results and the lack of an accepted theoretical framework. In this work, we add some insight by identifying a UV–vis measurement artifact that distorts observed absorption peak positions, amplitudes, and consequently, chemical reaction rates extracted in optical microcavities. We predict and characterize the behavior of this artifact using the Transfer Matrix (TM) method and confirm its presence experimentally. We then present a correction technique whereby an effective molar absorption coefficient is assigned to an absorbing species within the cavity. These revelations have important implications for many existing examples of cavity-modified chemistry and establishing best practices for carrying out robust future investigations.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30596–30606 30596–30606"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c12269","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reports of altered chemical phenomena under vibrational strong coupling, including reaction rates, product distributions, intermolecular forces, and cavity-mediated vibrational energy transfer, have been met with a great deal of skepticism due to several irreproducible results and the lack of an accepted theoretical framework. In this work, we add some insight by identifying a UV–vis measurement artifact that distorts observed absorption peak positions, amplitudes, and consequently, chemical reaction rates extracted in optical microcavities. We predict and characterize the behavior of this artifact using the Transfer Matrix (TM) method and confirm its presence experimentally. We then present a correction technique whereby an effective molar absorption coefficient is assigned to an absorbing species within the cavity. These revelations have important implications for many existing examples of cavity-modified chemistry and establishing best practices for carrying out robust future investigations.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.