Programmable Plasma-Microdroplet Cascade Reactions for Multicomponent Systems

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alexander J. Grooms, Isabella M. Marcelo, Robert T. Huttner and Abraham K. Badu-Tawiah*, 
{"title":"Programmable Plasma-Microdroplet Cascade Reactions for Multicomponent Systems","authors":"Alexander J. Grooms,&nbsp;Isabella M. Marcelo,&nbsp;Robert T. Huttner and Abraham K. Badu-Tawiah*,&nbsp;","doi":"10.1021/jacs.4c0705310.1021/jacs.4c07053","DOIUrl":null,"url":null,"abstract":"<p >The concept of programmable cascade reactions in charged microdroplets is introduced using carbon–carbon (C–C) bond formation via uncatalyzed Michael addition in a three-tier study culminating in programmable Hantzsch multicomponent, multistep reactions. In situ generated reactive oxygen species (ROS) from nonthermal plasma discharge are fused with charged water microdroplets (devoid of ROS) in real time for accelerated chemical reactions. This plasma-microdroplet fusion platform utilizing a coaxial spray configuration enabled product selection while avoiding unwanted side reactions. Hydrogen abstraction via ROS facilitated the formation of enolate anions without strong base use. Reaction enhancement factors &gt;10<sup>3</sup> were calculated for plasma-microdroplet fusion versus microdroplet-only reactions. The platform programmability was showcased through (i) uncatalyzed 1,4-Michael addition of α,β-unsaturated carbonyls, (ii) novel C–C bond formation via the use of pro-electrophilic amine and alcohol substrates─activated through collisions in the microdroplet environment to serve as Michael acceptors, and (iii) selective Hantzsch cascade reaction with cross-coupling products, avoiding side reactions including N-alkylation and self-coupling product formation. Milligram quantity product collection is achieved, showcasing plasma-microdroplet fusion as an effective tool for preparative-scale synthesis. Thus, the controlled generation of ROS via plasma discharge during charged water microdroplet evolution establishes a green synthetic method for uncatalyzed C–C bond formation.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30068–30077 30068–30077"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c07053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of programmable cascade reactions in charged microdroplets is introduced using carbon–carbon (C–C) bond formation via uncatalyzed Michael addition in a three-tier study culminating in programmable Hantzsch multicomponent, multistep reactions. In situ generated reactive oxygen species (ROS) from nonthermal plasma discharge are fused with charged water microdroplets (devoid of ROS) in real time for accelerated chemical reactions. This plasma-microdroplet fusion platform utilizing a coaxial spray configuration enabled product selection while avoiding unwanted side reactions. Hydrogen abstraction via ROS facilitated the formation of enolate anions without strong base use. Reaction enhancement factors >103 were calculated for plasma-microdroplet fusion versus microdroplet-only reactions. The platform programmability was showcased through (i) uncatalyzed 1,4-Michael addition of α,β-unsaturated carbonyls, (ii) novel C–C bond formation via the use of pro-electrophilic amine and alcohol substrates─activated through collisions in the microdroplet environment to serve as Michael acceptors, and (iii) selective Hantzsch cascade reaction with cross-coupling products, avoiding side reactions including N-alkylation and self-coupling product formation. Milligram quantity product collection is achieved, showcasing plasma-microdroplet fusion as an effective tool for preparative-scale synthesis. Thus, the controlled generation of ROS via plasma discharge during charged water microdroplet evolution establishes a green synthetic method for uncatalyzed C–C bond formation.

Abstract Image

多组分系统的可编程等离子体-微滴级联反应
在一项三级研究中,通过未催化的迈克尔加成法形成碳-碳(C-C)键,引入了带电微滴中可编程级联反应的概念,最终形成了可编程的汉茨奇多组分、多步骤反应。非热等离子体放电在原位产生的活性氧(ROS)与带电水微滴(不含 ROS)实时融合,以加速化学反应。这种等离子体与微滴融合平台采用同轴喷雾配置,既能选择产品,又能避免不必要的副反应。通过 ROS 进行的氢气抽取促进了烯醇阴离子的形成,而无需使用强碱。计算出了等离子体-微液滴融合与纯微液滴反应的反应增强因子 103。该平台的可编程性通过以下几个方面得到了展示:(i) α、β-不饱和羰基的非催化 1,4-Michael 加成反应;(ii) 通过使用亲电性胺和醇底物--在微液滴环境中通过碰撞激活作为 Michael 受体--形成新型 C-C 键;(iii) 与交叉耦合产物进行选择性 Hantzsch 级联反应,避免了包括 N- 烷基化和自偶联产物形成在内的副反应。实现了毫克量级的产物收集,展示了等离子体-微滴融合作为制备规模合成的有效工具。因此,在带电水微滴演化过程中通过等离子体放电可控地生成 ROS,为非催化 C-C 键的形成建立了一种绿色合成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信