{"title":"A Carborane-Derived Proton-Coupled Electron Transfer Reagent","authors":"Enric H. Adillon, and , Jonas C. Peters*, ","doi":"10.1021/jacs.4c0900710.1021/jacs.4c09007","DOIUrl":null,"url":null,"abstract":"<p >Reagents capable of concerted proton–electron transfer (CPET) reactions can access reaction pathways with lower reaction barriers compared to stepwise pathways involving electron transfer (ET) and proton transfer (PT). To realize reductive multielectron/proton transformations involving CPET, one approach that has shown recent promise involves coupling a cobaltocene ET site with a protonated arylamine Brønsted acid PT site. This strategy colocalizes the electron/proton in a matter compatible with a CPET step and net reductive electrocatalysis. To probe the generality of such an approach a class of C,C′-diaryl-<i>o</i>-carboranes is herein explored as a conceptual substitute for the cobaltocene subunit, with an arylamine linkage still serving as a colocalized Brønsted base suitable for protonation. The featured <i>o</i>-carborane (Ph<b>Cb</b>Ph<sup>N</sup>) can be reduced and protonated to generate an N–H bond with a weak effective bond dissociation free energy (BDFE<sub>eff</sub>) of 31 kcal/mol, estimated with measured thermodynamic data. This N–H bond is among the lowest measured element–H bonds for analyzed nonmetal compounds. Distinct solid-state crystal structures of the one- and two-electron reduced forms of diaryl-<i>o</i>-carboranes are disclosed to gain insight into their well-behaved redox characteristics. The singly reduced, protonated form of the diaryl-<i>o</i>-carborane can mediate multi-ET/PT reductions of azoarenes, diphenylfumarate, and nitrotoluene. In contrast to the aforementioned cobaltocene system, available mechanistic data disclosed herein support these reactions occurring by a rate-limiting ET step and not a CPET step. A relevant hydrogen evolution reaction (HER) reaction was also studied, with data pointing to a PT/ET/PT mechanism, where the reduced carborane core is itself highly stable to protonation.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30204–30211 30204–30211"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c09007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c09007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reagents capable of concerted proton–electron transfer (CPET) reactions can access reaction pathways with lower reaction barriers compared to stepwise pathways involving electron transfer (ET) and proton transfer (PT). To realize reductive multielectron/proton transformations involving CPET, one approach that has shown recent promise involves coupling a cobaltocene ET site with a protonated arylamine Brønsted acid PT site. This strategy colocalizes the electron/proton in a matter compatible with a CPET step and net reductive electrocatalysis. To probe the generality of such an approach a class of C,C′-diaryl-o-carboranes is herein explored as a conceptual substitute for the cobaltocene subunit, with an arylamine linkage still serving as a colocalized Brønsted base suitable for protonation. The featured o-carborane (PhCbPhN) can be reduced and protonated to generate an N–H bond with a weak effective bond dissociation free energy (BDFEeff) of 31 kcal/mol, estimated with measured thermodynamic data. This N–H bond is among the lowest measured element–H bonds for analyzed nonmetal compounds. Distinct solid-state crystal structures of the one- and two-electron reduced forms of diaryl-o-carboranes are disclosed to gain insight into their well-behaved redox characteristics. The singly reduced, protonated form of the diaryl-o-carborane can mediate multi-ET/PT reductions of azoarenes, diphenylfumarate, and nitrotoluene. In contrast to the aforementioned cobaltocene system, available mechanistic data disclosed herein support these reactions occurring by a rate-limiting ET step and not a CPET step. A relevant hydrogen evolution reaction (HER) reaction was also studied, with data pointing to a PT/ET/PT mechanism, where the reduced carborane core is itself highly stable to protonation.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.