Yu Nishio, Craig W. Lindsley and Aaron M. Bender*,
{"title":"Classics in Chemical Neuroscience: Tianeptine","authors":"Yu Nishio, Craig W. Lindsley and Aaron M. Bender*, ","doi":"10.1021/acschemneuro.4c0051910.1021/acschemneuro.4c00519","DOIUrl":null,"url":null,"abstract":"<p >Tianeptine (<b>1</b>) is an unusual antidepressant in that its mechanism of action appears to be independent from any activity at serotonin receptors or monoamine transporters. In fact, tianeptine has been shown to be a moderately potent agonist for the mu opioid receptor (MOR) and to a lesser extent the delta opioid receptor (DOR). Additionally, tianeptine’s efficacy may be related to its action on glutamate-mediated pathways of neuroplasticity. Regardless of which neurotransmitter system is primarily responsible for the observed efficacy, the MOR agonist activity is problematic with respect to abuse liability. Increasing numbers of case reports have demonstrated that tianeptine is indeed being used recreationally at doses far beyond what are considered therapeutically relevant or safe, and scheduling reclassifications or outright bans on tianeptine products are ongoing around the world. It is the aim of this review to discuss the medicinal chemistry and pharmacology of tianeptine and to summarize this intriguing discrepancy between tianeptine’s historical use as a safe and effective antidepressant and its emerging potential for abuse.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acschemneuro.4c00519","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00519","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tianeptine (1) is an unusual antidepressant in that its mechanism of action appears to be independent from any activity at serotonin receptors or monoamine transporters. In fact, tianeptine has been shown to be a moderately potent agonist for the mu opioid receptor (MOR) and to a lesser extent the delta opioid receptor (DOR). Additionally, tianeptine’s efficacy may be related to its action on glutamate-mediated pathways of neuroplasticity. Regardless of which neurotransmitter system is primarily responsible for the observed efficacy, the MOR agonist activity is problematic with respect to abuse liability. Increasing numbers of case reports have demonstrated that tianeptine is indeed being used recreationally at doses far beyond what are considered therapeutically relevant or safe, and scheduling reclassifications or outright bans on tianeptine products are ongoing around the world. It is the aim of this review to discuss the medicinal chemistry and pharmacology of tianeptine and to summarize this intriguing discrepancy between tianeptine’s historical use as a safe and effective antidepressant and its emerging potential for abuse.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.